Skip to main content

Jaguar Land Rover to begin real-world tests of CAV technologies

Jaguar Land Rover plans to create a fleet of more than 100 research vehicles over the next four years, to develop and test a wide range of connected and autonomous vehicle (CAV) technologies. The first of these research cars will be driven on a new 41 mile test route on UK motorways and urban roads around Coventry and Solihull later this year. The initial tests will involve vehicle-to-vehicle and vehicle-to-infrastructure communications technologies that will allow cars to talk to each other and roadsid
July 18, 2016 Read time: 2 mins
7998 Jaguar Land Rover plans to create a fleet of more than 100 research vehicles over the next four years, to develop and test a wide range of connected and autonomous vehicle (CAV) technologies. The first of these research cars will be driven on a new 41 mile test route on UK motorways and urban roads around Coventry and Solihull later this year.

The initial tests will involve vehicle-to-vehicle and vehicle-to-infrastructure communications technologies that will allow cars to talk to each other and roadside signs, overhead gantries and traffic lights. Ultimately, data sharing between vehicles would allow future connected cars to co-operate and work together to assist the driver and make lane changing and crossing junctions easier and safer.

Technologies being used include Roadwork Assist, which uses a forward-facing stereo camera to generate a 3D view of the road ahead and together with advanced image processing software, it can recognise cones and barriers. The system will sense when the vehicle is approaching the start of the roadworks, identify an ideal path through complicated construction sites and contraflows and inform the driver that the road is narrowing ahead. The system will then apply a small amount of steering assistance to the wheel to help the driver remain centred in lane.

Safe Pullaway identifies when the vehicle is getting too close to the vehicle in front in traffic jams or when entering junctions. It uses the stereo camera to monitor the area immediately in front of the vehicle and automatically applies the brakes if objects such as vehicles or walls are detected.

Over the Horizon Warning is part of a research project testing devices that use radio signals to transmit relevant data from vehicle to vehicle to warn drivers and autonomous cars of hazards and obstacles over the horizon or around blind bends.

Emergency Vehicle Warning allows connected emergency vehicles to communicate with other vehicles on the road: a device in the emergency vehicle would broadcast that it is approaching. Drivers would receive an audible warning along with a visual alert telling them the direction the emergency vehicle is coming from and how far away it is.

Related Content

  • January 27, 2012
    Integrate systems to reduce roadside infrastructure
    David Crawford reviews promising current developments. Instrumentation of the road infrastructure has grown to become one of the most dynamic sectors of the ITS industry. Drivers for its deployment include global concerns over the commercial and environmental pressures of traffic congestion, the importance of keeping drivers informed throughout their journeys, and the need to reduce accident rates and promote the safety of all road users, for example by enforcing traffic safety rules.
  • October 28, 2019
    C/AVs could mean cheaper roads
    The safety benefits of C/AVs have long been promoted – but research suggests they should also contribute to cheaper roads. David Crawford investigates the potential benefits in infrastructure costs Building narrower freeway lanes to accommodate the enhanced route-tracking capabilities of connected and autonomous vehicles (C/AVs), running in platoon conditions, could result in cost savings of £0.5 million (€0.56 million or US$6.5 million) for every km of road length built. Such benefits could be secur
  • July 10, 2018
    Adaptive cruise control can mitigate phantom traffic jams, says Ford
    Phantom traffic jams can be minimised through adaptive cruise control (ACC) technology, says Ford. These traffic jams occur when one driver hits the brakes and causes a chain reaction of other drivers tapping their brakes which causes traffic flow to halt. Ford conducted a test alongside Vanderbilt University researchers on a closed test track involving 36 vehicles across three lanes. https://www.youtube.com/watch?v=2GYfXxVn2Oc The motor company says the main causes of phantom jams are human fa
  • March 20, 2014
    Adaptive cruise control would suppress traffic instability
    Professor Berthold Horn of Massachusetts Institute of Technology believes a modified adaptive cruise control could mitigate phantom traffic jamsthat occur for no apparent reason. The phenomenon of the phantom traffic jam is all too common: they appear for no apparent reason and, having caused frustrating delays for all travelers, evaporate for an equally mystical reason. Phantom traffic jams usually occur on busy highways and often take the form of repeatedly stopping and then accelerating up to near the