Skip to main content

Honda world first can detect the potential for traffic congestion

Honda Motor Company has announced the successful development of what it claims is the world’s first technology to detect the potential for traffic congestion and determine whether the driving pattern of the vehicle is likely to create traffic jams. The company developed this technology while recognising that the acceleration and deceleration behaviour of one vehicle influences the traffic pattern of trailing vehicles and can trigger the traffic congestion.
April 27, 2012 Read time: 2 mins
1683 Honda Motor Company has announced the successful development of what it claims is the world’s first technology to detect the potential for traffic congestion and determine whether the driving pattern of the vehicle is likely to create traffic jams. The company developed this technology while recognising that the acceleration and deceleration behaviour of one vehicle influences the traffic pattern of trailing vehicles and can trigger the traffic congestion.

In conjunction with the Research Centre for Advanced Science and Technology at the 5315 University of Tokyo, Honda conducted experimental testing of a system using the technology to detect the potential for traffic congestion. The test results demonstrated that the system helped increase the average speed by approximately 23 per cent and improved fuel efficiency by approximately eight per cent of trailing vehicles.

With the goal to bring this technology to market, Honda will begin the first public-road testing of the technology in Italy and Indonesia in May and July of this year, respectively, to verify the effectiveness of the technology in minimising vehicle congestion.  

Rather than providing information to help the driver avoid existing congestion based on current traffic information, the system monitors the acceleration and deceleration patterns of the vehicle to determine whether the driver’s driving pattern is likely to create traffic congestion. Based on this determination, the system provides the driver with appropriate information, including a colour-coded display through the on-board terminal, to encourage smooth driving which will help alleviate the intensity of acceleration and deceleration by trailing vehicles, thereby helping to prevent or minimise the occurrence of vehicle congestion.

Moreover, the positive effect on minimising congestion and fuel efficiency improvement can be further increased by connecting the on-board terminals to cloud servers to make the driver aware of and in sync with the driving patterns of vehicles ahead by activating the ACC (adaptive cruise control) system at the right time to maintain a constant distance between vehicles at the most appropriate interval.

Related Content

  • With C-ITS we can get ourselves connected
    June 27, 2025
    Workzones need to be safer for drivers and workers – and the technology exists to harmonise safety with mobility needs, says Swarco’s Daniel Lenczowski
  • Study reveals in-car devices aid positive changes to driver behaviour
    December 3, 2012
    The results of a four-year study by the Field Operational Tests of Aftermarket and Nomadic devices in Vehicles (TeleFOT) Consortium were presented at a recent conference in Brussels. The study focused on the assessment of the impact of driver support functions provided by in-vehicle aftermarket and nomadic devices on driving and driver behaviour. Coordinated by the Technical Research Centre of Finland (VTT) and with a budget of US$19.5 million, the four-year TeleFOT project is one of the biggest traffic IC
  • TRW demonstrates semi-automated driving features
    September 16, 2014
    TRW Automotive Holdings is to demonstrate is semi-automated driving capabilities at the Company's vehicle test track event in Locke Township, Michigan, today. Drivers will be able to experience a 'highway driving assist' feature which can enable automatic steering, braking and acceleration for highway speeds above 25 mph. The demonstration vehicle integrates TRW's AC1000 radar and next generation camera prototype together with its electrically powered steering belt drive (EPS BD) and electronic stability
  • Development of cooperative driving applications for work zones
    July 17, 2012
    The German AKTIV project is researching several cooperative driving applications for use in work zones. PTV's Michael Ortgiese details progress. The steep increases in traffic volumes predicted back in the early 1990s have unfortunately been proven to be more than accurate. In Germany, the AKTIV project continues to look into cooperative technologies' potential to reduce the impact of those increased traffic volumes and keep traffic moving despite limitations in infrastructure capacity.