Skip to main content

Honda world first can detect the potential for traffic congestion

Honda Motor Company has announced the successful development of what it claims is the world’s first technology to detect the potential for traffic congestion and determine whether the driving pattern of the vehicle is likely to create traffic jams. The company developed this technology while recognising that the acceleration and deceleration behaviour of one vehicle influences the traffic pattern of trailing vehicles and can trigger the traffic congestion.
April 27, 2012 Read time: 2 mins
1683 Honda Motor Company has announced the successful development of what it claims is the world’s first technology to detect the potential for traffic congestion and determine whether the driving pattern of the vehicle is likely to create traffic jams. The company developed this technology while recognising that the acceleration and deceleration behaviour of one vehicle influences the traffic pattern of trailing vehicles and can trigger the traffic congestion.

In conjunction with the Research Centre for Advanced Science and Technology at the 5315 University of Tokyo, Honda conducted experimental testing of a system using the technology to detect the potential for traffic congestion. The test results demonstrated that the system helped increase the average speed by approximately 23 per cent and improved fuel efficiency by approximately eight per cent of trailing vehicles.

With the goal to bring this technology to market, Honda will begin the first public-road testing of the technology in Italy and Indonesia in May and July of this year, respectively, to verify the effectiveness of the technology in minimising vehicle congestion.  

Rather than providing information to help the driver avoid existing congestion based on current traffic information, the system monitors the acceleration and deceleration patterns of the vehicle to determine whether the driver’s driving pattern is likely to create traffic congestion. Based on this determination, the system provides the driver with appropriate information, including a colour-coded display through the on-board terminal, to encourage smooth driving which will help alleviate the intensity of acceleration and deceleration by trailing vehicles, thereby helping to prevent or minimise the occurrence of vehicle congestion.

Moreover, the positive effect on minimising congestion and fuel efficiency improvement can be further increased by connecting the on-board terminals to cloud servers to make the driver aware of and in sync with the driving patterns of vehicles ahead by activating the ACC (adaptive cruise control) system at the right time to maintain a constant distance between vehicles at the most appropriate interval.

For more information on companies in this article

Related Content

  • Virtual traffic management centres, a new direction in traffic monitoring
    January 30, 2012
    David Crawford picks up a new direction trend in traffic monitoring The surprise winner in the Traffic Management Centre (TMC) category of the recently-announced 2011 OSMOSE (Open Source for MObile and SustainablE city) Awards for European innovations in urban transport, is the Danish city of Aalborg - which doesn't have a TMC. Alternatively, one might consider its 'virtual' TMC as a signpost for the future in medium-sized cities.
  • V2X: The design challenges
    May 2, 2018
    The connected future throws up a number of enticing possibilities for us all. But, says Houman Zarrinkoub of MathWorks, issues around visualisation, prototyping and model evolution need to be examined carefully. We are all aware of the huge amount of investment going into driverless car technologies. With the likes of Volvo, Tesla and BMW getting in on the act, soon they will be a common sight on our roads. However, for this to occur, the vehicles must be able to connect with each other and ensure driver
  • Intelligent intersection control
    April 12, 2013
    Intelligent intersection control systems have a growing role to play in making urban traffic more efficient. Robin Meczes reports. The idea of every traffic light turning green as you approach it has long been a dream for many an urban driver – and none more so than those driving heavy goods vehicles (HGVs), which are slow and difficult to bring to a halt and then accelerate back to normal travel speed. But that dream has become a reality for some drivers in a small number of cities around Europe in the las
  • ZF TRW demonstrates semi-automated highway driving assist system
    July 2, 2015
    ZF TRW has demonstrated its semi-automated driving capabilities at a test track event in Berlin, Germany. The vehicle has a 'Highway Driving Assist feature which can enable automatic steering, braking and acceleration for highway speeds above 40 kph. The demonstration vehicle integrates ZF TRW's AC1000 radar and S-Cam 3 video camera sensor together with its electrically powered steering belt drive (EPS BD) and electronic stability control EBC 460 – the combination of adaptive cruise control (ACC) and lan