Skip to main content

Hitachi Group to develop basic technology for preventing collisions

Japan-based Hitachi, Hitachi Automotive Systems and Clarion have developed the basic technology for preventing collisions while maintaining safe and practical speeds by predicting changes in pedestrian movements and rapidly calculating optimum speed patterns in real time. The companies claim to have verified the validity of the technology using experimental vehicles and determined that it can be implemented at safe and practical driving speeds. Going forward, the Hitachi Group will accelerate to further
October 16, 2015 Read time: 2 mins
Japan-based 2213 Hitachi, Hitachi Automotive Systems and Clarion have developed the basic technology for preventing collisions while maintaining safe and practical speeds by predicting changes in pedestrian movements and rapidly calculating optimum speed patterns in real time.

The companies claim to have verified the validity of the technology using experimental vehicles and determined that it can be implemented at safe and practical driving speeds. Going forward, the Hitachi Group will accelerate to further develop the technology through repeated trials and contribute to the commercialisation of autonomous driving technology.

The Hitachi Group has been conducting leading research on technologies that contribute to commercialisation of autonomous driving on local roads, in addition to autonomous driving in parking areas and expressways.

It has developed the basic technology to address the problems faced by autonomous vehicles, such as recognising obstacles and moving objects such as passing vehicles and pedestrians, humans and predicting changes in their movements, etc. and verified its validity using experimental vehicles.

Key features of the technology include speed control based on prediction of change in movement and high-speed calculation of optimum speed

Tests using experimental vehicles were conducted to verify the validity of the new technology. Results showed that it was possible to achieve practical speeds for passing through pedestrians and driving within the standard comfortable speeds for acceleration (2.2 m/s2 or less) and for change of acceleration (2.0 m/s3 or less).

Going forward, the Hitachi Group will conduct further tests using experimental vehicles in different driving environments, including at Mcity which opened at the University of Michigan in July 2015 as a controlled environment for conducting tests on autonomous vehicles and connected cars.

For more information on companies in this article

Related Content

  • Calculating the cost of stellar solutions
    August 10, 2016
    The increasing availability and accuracy of global navigation satellite system (GNSS) is opening up low-cost options in many areas as David Crawford finds out. Boosting commercialisation of European global navigation satellite system (EGNSS) technologies for ITS initially depends heavily on demonstrating competitive and cost/benefit advantages obtainable from the deployment of EGNOS (the current European Geostationary Navigation Overlay Service), and ultimately the EU’s Galileo constellation (see box). So,
  • Creative finance enables parking progress in LA
    March 15, 2016
    David Crawford investigates an innovative public/private partnership. Los Angeles entered the second decade of the 21st century facing major challenges to its parking operations. With a population of 3.8 million, and its car-oriented culture still predominant, the city's parking meters were technically outdated - with most only accepting coins and many regularly out of service - resulting in a substantial loss of revenue. This coincided with a number of Californian cities looking to parking income to boost
  • Hyperloop: from sci-fi to transport policy
    April 16, 2020
    The future is here. While it has long looked like something from a sci-fi movie, Graham Anderson investigates a technology whose time might have come.
  • UK smart mobility living lab launched in London
    February 19, 2016
    UK transport consultancy, the Transport Research Laboratory (TRL), has launched the UK Smart Mobility Living Lab @ Greenwich; a real-life environment where connected and automated vehicles (CAVs), services and processes can be safely developed, evaluated and integrated within the local community. Based in the Royal Borough of Greenwich, London and supported by UK government, the UK Smart Mobility Living Lab @ Greenwich helps organisations bring solutions to market faster by enabling them to be trialled a