Skip to main content

Highly automated driving ‘to spark adoption of centralised ADAS’

As vehicles become highly independent and begin to drive and react to traffic on their own, autonomous systems will aggregate and process data from a variety of on-board sensors and connected infrastructure, says ABI Research. This forces the industry to hit a hard reset on advanced driver assistance systems (ADAS) architectures, currently dominated by distributed processing and smart sensors. Automotive OEMs will need to adopt new platforms based on powerful, centralised processors and high-speed low la
August 18, 2016 Read time: 2 mins
As vehicles become highly independent and begin to drive and react to traffic on their own, autonomous systems will aggregate and process data from a variety of on-board sensors and connected infrastructure, says 5725 ABI Research.

This forces the industry to hit a hard reset on advanced driver assistance systems (ADAS) architectures, currently dominated by distributed processing and smart sensors. Automotive OEMs will need to adopt new platforms based on powerful, centralised processors and high-speed low latency networking. ABI Research forecasts 13 million vehicles with centralised ADAS platforms will ship in 2025.

James Hodgson, industry analyst at ABI Research, believes the distributed approach to ADAS systems will prove unsustainable as OEMs look to deliver highly automated driving around 2020. The new centralised ADAS architectures will unify sensing, processing, and actuation to deliver integrated decision-making for smooth path planning and effective collision avoidance.

This transition will present major opportunities for vendors new to the industry, as well as old incumbents, including NVIDIA, NXP, and Mobileye, who all announced centralised autonomous driving platforms. While each is in a different stage of development, all have common themes emerging, particularly in relation to processing power. The platforms average between eight and twelve teraflops (TFLOPs), a figure that is orders of magnitude beyond the typical smart sensor currently deployed in ADAS.

Physical separation of numerous dumb sensors and centralised processing will also open up opportunities for in-vehicle networking vendors. Ethernet-based solutions from vendors such as Marvell Semiconductor and Valens Semiconductor are well-positioned to meet the needs of high bandwidth and stringent automotive-grade requirements at a low cost.

"We are fast approaching the end of what can be achieved in automation within the confines of legacy architectures," concludes Hodgson. "While there are not yet any specific standards for centralised ADAS, it is interesting that three separate Tier 2s announced very similar platforms in quick succession. Vendors across the ecosystem need to take this time to plan accordingly in order to appropriately manage the industry transition toward centralised ADAS architectures."

For more information on companies in this article

Related Content

  • What’s right with this picture?
    September 12, 2024
    AI-driven image review is a game changer for tolling industry efficiency. Rafael Hernandez of IntelliRoad outlines the importance of partnerships with service providers
  • OmniVision's automotive image sensors win AEC-Q100 qualification
    March 22, 2012
    OmniVision Technologies, a developer of advanced digital imaging solutions, has announced that its flagship automotive image sensors, the OV10630 and the OV10635, have both received AEC-Q100 Grade 2 qualifications, meeting the high standards of quality and performance for automotive applications. Additionally, the company announced that both sensors are in volume production and will be shipping to multiple automotive customers. The two sensors are similar in functionality and performance but are integrated
  • Major growth predicted for OEM embedded telematics
    September 5, 2014
    According to a new research report by Berg Insight, shipments of OEM embedded telematics systems worldwide are forecasted to grow from 8.4 million units in 2013 at a compound annual growth rate (CAGR) of 30.6 per cent to reach 54.5 million units in 2020. Moreover, Berg Insight forecasts that the number of cars sold worldwide equipped with head-units featuring handset-based telematics capabilities will grow from 7 million in 2013 to 68.5 million in 2020.
  • Blockchain: the next big thing for ITS? Really?
    October 8, 2018
    Everyone’s heard of blockchain – but most people are less sure about what it really is, and how it might be used in transportation. Andrew Williams peers into cyberspace to find some answers. A growing number of organisations in the ITS industry are exploring how blockchain technology could be used for ITS and mobility applications. So, what exactly is blockchain technology? What are the key current and potential applications in the mobility and ITS sector? And what practical benefits might it bring?