Skip to main content

Highly automated driving ‘to spark adoption of centralised ADAS’

As vehicles become highly independent and begin to drive and react to traffic on their own, autonomous systems will aggregate and process data from a variety of on-board sensors and connected infrastructure, says ABI Research. This forces the industry to hit a hard reset on advanced driver assistance systems (ADAS) architectures, currently dominated by distributed processing and smart sensors. Automotive OEMs will need to adopt new platforms based on powerful, centralised processors and high-speed low la
August 18, 2016 Read time: 2 mins
As vehicles become highly independent and begin to drive and react to traffic on their own, autonomous systems will aggregate and process data from a variety of on-board sensors and connected infrastructure, says 5725 ABI Research.

This forces the industry to hit a hard reset on advanced driver assistance systems (ADAS) architectures, currently dominated by distributed processing and smart sensors. Automotive OEMs will need to adopt new platforms based on powerful, centralised processors and high-speed low latency networking. ABI Research forecasts 13 million vehicles with centralised ADAS platforms will ship in 2025.

James Hodgson, industry analyst at ABI Research, believes the distributed approach to ADAS systems will prove unsustainable as OEMs look to deliver highly automated driving around 2020. The new centralised ADAS architectures will unify sensing, processing, and actuation to deliver integrated decision-making for smooth path planning and effective collision avoidance.

This transition will present major opportunities for vendors new to the industry, as well as old incumbents, including NVIDIA, NXP, and Mobileye, who all announced centralised autonomous driving platforms. While each is in a different stage of development, all have common themes emerging, particularly in relation to processing power. The platforms average between eight and twelve teraflops (TFLOPs), a figure that is orders of magnitude beyond the typical smart sensor currently deployed in ADAS.

Physical separation of numerous dumb sensors and centralised processing will also open up opportunities for in-vehicle networking vendors. Ethernet-based solutions from vendors such as Marvell Semiconductor and Valens Semiconductor are well-positioned to meet the needs of high bandwidth and stringent automotive-grade requirements at a low cost.

"We are fast approaching the end of what can be achieved in automation within the confines of legacy architectures," concludes Hodgson. "While there are not yet any specific standards for centralised ADAS, it is interesting that three separate Tier 2s announced very similar platforms in quick succession. Vendors across the ecosystem need to take this time to plan accordingly in order to appropriately manage the industry transition toward centralised ADAS architectures."

For more information on companies in this article

Related Content

  • U-M offers open-access automated cars to advance driverless research
    November 22, 2016
    The University of Michigan (U-M) is offering use of its new research vehicles as test beds for academic and industry researchers to test self-driving and connected vehicle technologies at its proving ground. These open connected and automated research vehicles, or open CAVs, are equipped with sensors including radar, lidar and cameras, among other features and will be able to link to a robot operating system. An open development platform for connected vehicle communications will be added later. The op
  • Global V2V penetration into new vehicles to rise by 2027
    June 13, 2013
    A new report from ABI research concludes that global vehicle to vehicle (V2V) penetration into new vehicles will increase from just over 10 per cent in 2018 to 70 per cent in 2027, with the EU, US, and Japan as key regions adopting V2V in the mid-term. “V2X market and regulatory dynamics vary greatly from region to region. While the US will decide whether or not to mandate V2X by the end of 2013 with implementation not expected before 2018, in Europe the Car 2 Car Communication Consortium (C2C-CC) has issue
  • Growing ITS capability, a way to increase infrastructure capacity
    February 2, 2012
    Iteris's Greg McKhann makes the case for policymakers to look more seriously at the use of ITS as a means of increasing existing infrastructure capacity
  • Smartphone - the next technology for charging and tolling?
    January 25, 2012
    With all the debates over the most suitable future technology or technologies for charging and tolling, is it not time for the industry to look at what the rest of ITS is doing and bring a rank outsider - the smart phone - closer into the fold? By Jack Opiola, D'Artagnan Consulting LLC