Skip to main content

Highly automated driving ‘to spark adoption of centralised ADAS’

As vehicles become highly independent and begin to drive and react to traffic on their own, autonomous systems will aggregate and process data from a variety of on-board sensors and connected infrastructure, says ABI Research. This forces the industry to hit a hard reset on advanced driver assistance systems (ADAS) architectures, currently dominated by distributed processing and smart sensors. Automotive OEMs will need to adopt new platforms based on powerful, centralised processors and high-speed low la
August 18, 2016 Read time: 2 mins
As vehicles become highly independent and begin to drive and react to traffic on their own, autonomous systems will aggregate and process data from a variety of on-board sensors and connected infrastructure, says 5725 ABI Research.

This forces the industry to hit a hard reset on advanced driver assistance systems (ADAS) architectures, currently dominated by distributed processing and smart sensors. Automotive OEMs will need to adopt new platforms based on powerful, centralised processors and high-speed low latency networking. ABI Research forecasts 13 million vehicles with centralised ADAS platforms will ship in 2025.

James Hodgson, industry analyst at ABI Research, believes the distributed approach to ADAS systems will prove unsustainable as OEMs look to deliver highly automated driving around 2020. The new centralised ADAS architectures will unify sensing, processing, and actuation to deliver integrated decision-making for smooth path planning and effective collision avoidance.

This transition will present major opportunities for vendors new to the industry, as well as old incumbents, including NVIDIA, NXP, and Mobileye, who all announced centralised autonomous driving platforms. While each is in a different stage of development, all have common themes emerging, particularly in relation to processing power. The platforms average between eight and twelve teraflops (TFLOPs), a figure that is orders of magnitude beyond the typical smart sensor currently deployed in ADAS.

Physical separation of numerous dumb sensors and centralised processing will also open up opportunities for in-vehicle networking vendors. Ethernet-based solutions from vendors such as Marvell Semiconductor and Valens Semiconductor are well-positioned to meet the needs of high bandwidth and stringent automotive-grade requirements at a low cost.

"We are fast approaching the end of what can be achieved in automation within the confines of legacy architectures," concludes Hodgson. "While there are not yet any specific standards for centralised ADAS, it is interesting that three separate Tier 2s announced very similar platforms in quick succession. Vendors across the ecosystem need to take this time to plan accordingly in order to appropriately manage the industry transition toward centralised ADAS architectures."

Related Content

  • June 12, 2017
    ABI Research sees V2X technology gaining momentum in automotive
    The latest report from ABI Research sees vehicle-to-everything (V2X) finally gaining momentum in the smart mobility industry. Illustrating this is a growing number of initiatives, trials, and product launches. Cellular V2X, aggressively promoted by the 5G Automotive Association (5GAA), now offers a potentially more flexible alternative to the legacy IEEE 802.11p. Vehicle-to-vehicle (V2V) and vehicle-to-infrastructure (V2I) collectively refer to V2X.
  • September 23, 2014
    Does ADAS create as many problems as it solves
    Victoria Banks and Neville Stanton [1] of Southampton University’s Transportation Research Group examine the real impact of creeping driver automation. Safety research suggests that 90% of accidents are thought to be a result of driver inattentiveness to unpredictable or incomplete information and the vision is that highly automated vehicles will lead to accident-free driving in the future.
  • August 30, 2019
    Utah DoT and Panasonic get connected
    Utah is making smart roadways a priority and has entered a partnership with Panasonic to move things forward. Adam Hill asks Utah DoT to outline where the state is heading Utah Department of Transportation (UDoT) has form when it comes to connectivity. It built the first operational connected vehicle corridor in the US – and has now joined up with Panasonic to extend its operation. “When we work with technology providers, we are working together to get that win-win,” says Carlos Braceras, UDoT executi
  • August 30, 2017
    Automotive AI market predicted to grow by nearly 40 per cent by 2025
    According to the new market research report from MarketsandMarkets, the automotive artificial intelligence (AI) market is expected to be valued at USD 782.9 Million in 2017 and is expected to reach US$10,573.3 million by 2025, at a CAGR of 38.46 per cent between 2017 and 2025. The report indicates that emergence of autonomous vehicle and industry-wide standards such as the adaptive cruise control (ACC), blind spot alert and advanced driver assistance systems (ADAS) would trigger the growth of the automotive