Skip to main content

Highly automated driving ‘to spark adoption of centralised ADAS’

As vehicles become highly independent and begin to drive and react to traffic on their own, autonomous systems will aggregate and process data from a variety of on-board sensors and connected infrastructure, says ABI Research. This forces the industry to hit a hard reset on advanced driver assistance systems (ADAS) architectures, currently dominated by distributed processing and smart sensors. Automotive OEMs will need to adopt new platforms based on powerful, centralised processors and high-speed low la
August 18, 2016 Read time: 2 mins
As vehicles become highly independent and begin to drive and react to traffic on their own, autonomous systems will aggregate and process data from a variety of on-board sensors and connected infrastructure, says 5725 ABI Research.

This forces the industry to hit a hard reset on advanced driver assistance systems (ADAS) architectures, currently dominated by distributed processing and smart sensors. Automotive OEMs will need to adopt new platforms based on powerful, centralised processors and high-speed low latency networking. ABI Research forecasts 13 million vehicles with centralised ADAS platforms will ship in 2025.

James Hodgson, industry analyst at ABI Research, believes the distributed approach to ADAS systems will prove unsustainable as OEMs look to deliver highly automated driving around 2020. The new centralised ADAS architectures will unify sensing, processing, and actuation to deliver integrated decision-making for smooth path planning and effective collision avoidance.

This transition will present major opportunities for vendors new to the industry, as well as old incumbents, including NVIDIA, NXP, and Mobileye, who all announced centralised autonomous driving platforms. While each is in a different stage of development, all have common themes emerging, particularly in relation to processing power. The platforms average between eight and twelve teraflops (TFLOPs), a figure that is orders of magnitude beyond the typical smart sensor currently deployed in ADAS.

Physical separation of numerous dumb sensors and centralised processing will also open up opportunities for in-vehicle networking vendors. Ethernet-based solutions from vendors such as Marvell Semiconductor and Valens Semiconductor are well-positioned to meet the needs of high bandwidth and stringent automotive-grade requirements at a low cost.

"We are fast approaching the end of what can be achieved in automation within the confines of legacy architectures," concludes Hodgson. "While there are not yet any specific standards for centralised ADAS, it is interesting that three separate Tier 2s announced very similar platforms in quick succession. Vendors across the ecosystem need to take this time to plan accordingly in order to appropriately manage the industry transition toward centralised ADAS architectures."

For more information on companies in this article

Related Content

  • Performance indicators help differentiate between truck tolling systems
    August 20, 2014
    Traffic Quality Management Karl Ernst Ambrosch talks to ITS International about a new KPI-based methodology for assessing the efficacy of electronic toll collection schemes The debate over which is the ‘best’ solution for applications such as truck tolling is now years old.
  • Mobileye launches new mapping technology, integrates with GM and Volkswagen
    March 17, 2016
    Both General Motors and Volkswagen are to incorporate Mobileye’s new road experience management (REM) mapping technology into their vehicles. REM uses crowd-sourced real-time data for precise localisation and high-definition lane data that forms an important layer of information for autonomous driving. The software, based on that running on Mobileye's EyeQ processing platforms, extracts landmarks and roadway information at extremely low bandwidths – using approximately 10kb/km.
  • Transportation applications move to machine vision’s mainstream
    June 11, 2015
    The adaptation of machine vision to transport applications continues apace. That the machine vision industry is taking traffic installations seriously is evident by the amount of hardware and software products tailor-made for ITS applications that are now available on the market. A good example comes from US-based Gridsmart Technologies which has developed a single wire fisheye camera that provides a horizon to horizon view for use at intersections. Not only does the single camera replace four or more in a
  • Transport technology transforming bus stops in Los Angeles
    January 20, 2012
    David Crawford reports on a pioneering blend of transport technology and aesthetic By gaining a design award before installation has even started, the US$6.9 million City of Santa Monica (California)'s Big Blue Bus Shelter and Branding Package has ensured early interest among what it expects to be a new wave of transit riders. The American Institute of Architects' Los Angeles chapter's recently conferred 'Next LA Citation Award for Architecture', given for design excellence in projects as yet unbuilt, comm