Skip to main content

Galileo commercial service on track

The results of early proof of concept tests (EPOC) carried out by the Authentication and Accurate Location Experimentation with the Commercial Service (AALECS) show that the EPOC team has successfully tracked the encrypted Galileo E6-B and E6-C signals broadcast by Galileo satellites. As a result, the commercial service loop has been closed using both encrypted and non-encrypted signals. The tests are the result of a collective effort involving teams and projects of AALECS, supported by the European Comm
August 1, 2014 Read time: 2 mins

The results of early proof of concept tests (EPOC) carried out by the Authentication and Accurate Location Experimentation with the Commercial Service (AALECS) show that the EPOC team has successfully tracked the encrypted Galileo E6-B and E6-C signals broadcast by Galileo satellites. As a result, the commercial service loop has been closed using both encrypted and non-encrypted signals.

The tests are the result of a collective effort involving teams and projects of AALECS, supported by the 1690 European Commission, the 5810 European GNSS Agency (GSA), 6780 the European Space Agency (ESA) and the Galileo operator, Spaceopal. The European Commission launched AALECS in January 2014 and it was awarded to a consortium led by GMV including CGI, Qascom, IFEN, Veripos and KU Leuven.  As part of the AALECS project, GMV and IFEN developed an early proof of concept platform aimed at testing external data transmission through offline means. The project will last for approximately two and a half years.

During a ten-day testing period, receivers located in Spain and Germany, showed the successful tracking and data demodulation of encrypted signals from the available Galileo satellites, with periods where all satellites transmitting E6 encrypted signals were tracked simultaneously. The tests verified the Galileo commercial service (CS) signal’s encryption functionalities, with the data received containing authentication and high accuracy information previously generated outside the Galileo system. This is an essential feature to ensuring Galileo’s high accuracy and authentication services – some of which may be commercial in nature.

The Galileo commercial service will deliver a range of added-value features, including positioning accurate to decimetre level and an authentication element, both of which allow for the development of innovative applications for professional or commercial use. The Galileo CS demonstrator began its proof of concept earlier this year, with early service expected to start in 2016.

Once operational, the CS will provide access to two additional encrypted signals on the E6 band, delivering a higher data throughput rate and increased accuracy. CS addresses the authentication and high-precision market segments and will deliver innovative services with improved performance and greater added value than those obtained through the open service.

Related Content

  • May 16, 2012
    October take off for Galileo satellites
    The launch of the first two operational satellites of the EU's global navigation satellite system will take place on 20 October, the European Commission has announced. This is just the first of a series of launches due to take off from Europe's Space Port in Kourou, French Guiana. The launch of the Galileo satellites at an altitude of 23,600km will lead to the provision of initial satellite navigation services in 2014. Successive launches will complete the constellation by 2019.
  • May 12, 2020
    App improves EU’s Galileo Green Lanes
    More transparency ahead for better management of European Union border points
  • February 3, 2012
    New approach to real time travel information - free of charge
    Austria's national road operator, ASFINAG, has launched the TMCplus traveller information service which is unusual in that it offers encrypted-level services to all users free of charge. Martin Müllner writes
  • March 30, 2017
    ISO standard aids interoperability and data security
    Star Systems International’s Stephen Lockhart, explains how ISO 18000-6C can boost both interoperability and data security in RFID tolling applications. As more states, municipalities and agencies deploy electronic tolling solutions to generate funds and reduce congestion at tollbooths, there have been increased calls for standardisation in the industry.