Skip to main content

Galileo commercial service on track

The results of early proof of concept tests (EPOC) carried out by the Authentication and Accurate Location Experimentation with the Commercial Service (AALECS) show that the EPOC team has successfully tracked the encrypted Galileo E6-B and E6-C signals broadcast by Galileo satellites. As a result, the commercial service loop has been closed using both encrypted and non-encrypted signals. The tests are the result of a collective effort involving teams and projects of AALECS, supported by the European Comm
August 1, 2014 Read time: 2 mins

The results of early proof of concept tests (EPOC) carried out by the Authentication and Accurate Location Experimentation with the Commercial Service (AALECS) show that the EPOC team has successfully tracked the encrypted Galileo E6-B and E6-C signals broadcast by Galileo satellites. As a result, the commercial service loop has been closed using both encrypted and non-encrypted signals.

The tests are the result of a collective effort involving teams and projects of AALECS, supported by the 1690 European Commission, the 5810 European GNSS Agency (GSA), 6780 the European Space Agency (ESA) and the Galileo operator, Spaceopal. The European Commission launched AALECS in January 2014 and it was awarded to a consortium led by GMV including CGI, Qascom, IFEN, Veripos and KU Leuven.  As part of the AALECS project, GMV and IFEN developed an early proof of concept platform aimed at testing external data transmission through offline means. The project will last for approximately two and a half years.

During a ten-day testing period, receivers located in Spain and Germany, showed the successful tracking and data demodulation of encrypted signals from the available Galileo satellites, with periods where all satellites transmitting E6 encrypted signals were tracked simultaneously. The tests verified the Galileo commercial service (CS) signal’s encryption functionalities, with the data received containing authentication and high accuracy information previously generated outside the Galileo system. This is an essential feature to ensuring Galileo’s high accuracy and authentication services – some of which may be commercial in nature.

The Galileo commercial service will deliver a range of added-value features, including positioning accurate to decimetre level and an authentication element, both of which allow for the development of innovative applications for professional or commercial use. The Galileo CS demonstrator began its proof of concept earlier this year, with early service expected to start in 2016.

Once operational, the CS will provide access to two additional encrypted signals on the E6 band, delivering a higher data throughput rate and increased accuracy. CS addresses the authentication and high-precision market segments and will deliver innovative services with improved performance and greater added value than those obtained through the open service.

For more information on companies in this article

Related Content

  • Bluetooth and Wi-Fi offer new options for travel time measurements
    November 20, 2013
    New trials show Bluetooth and Wi-Fi signals can be reliably used for measuring travel times and at a lower cost than an ANPR system, but which is the better proposition depends on many factors. Measuring travel times has traditionally relied automatic number plate (or licence plate) recognition (ANPR/ALPR) cameras capturing the progress of vehicles travelling along a pre-defined route. Such systems also have the benefit of being able to count passing traffic and have become a vital tool in dealing with c
  • Driving forward cooperative intersection safety applications
    July 24, 2012
    Gregory Davis, FHWA, John Harding, NHTSA, and Mike Schagrin, ITS Joint Program Office (RITA) chart the course for cooperative intersection safety applications being pursued as part of the IntelliDrive programme. Crashes at intersections accounted for 8,703 highway fatalities in the US in 2008. Research and development is moving forward on IntelliDriveSM safety applications designed to help drivers avoid intersection accidents. These new safety systems could substantially drive down the highway death and inj
  • Australian new generation satellite positioning augmentation system kicks off
    February 15, 2017
    Spanish technology multinational GMV has begun a two-year collaborative project with Geoscience Australia (GA) and the Australia and New Zealand Cooperative Research Centre for Spatial Information (CRCSI) for the deployment of a satellite positioning augmentation system. The objective of the project is to show the potential benefits of satellite navigation technologies in Australia, including integrity and high precision applications. The project aims to make Satellite Based Augmentation Systems (SBAS) a
  • Reducing incident clear up times, saving money
    January 24, 2012
    In 2007 in Atlanta, Georgia, it took over four hours to open the road after a major commercial vehicle incident. Not any more. Four years ago the Texas Transportation Institute (TTI) cited Atlanta, Georgia as the third-most congested city in the United States. Each traveller in metro Atlanta lost an incredible 57 hours a year to traffic delays, wasting 40 gallons of fuel while sitting in traffic. In 2007, it took nearly four and a half hours to open travel lanes after an average tractor-trailer incident. Th