Skip to main content

Galileo commercial service on track

The results of early proof of concept tests (EPOC) carried out by the Authentication and Accurate Location Experimentation with the Commercial Service (AALECS) show that the EPOC team has successfully tracked the encrypted Galileo E6-B and E6-C signals broadcast by Galileo satellites. As a result, the commercial service loop has been closed using both encrypted and non-encrypted signals. The tests are the result of a collective effort involving teams and projects of AALECS, supported by the European Comm
August 1, 2014 Read time: 2 mins

The results of early proof of concept tests (EPOC) carried out by the Authentication and Accurate Location Experimentation with the Commercial Service (AALECS) show that the EPOC team has successfully tracked the encrypted Galileo E6-B and E6-C signals broadcast by Galileo satellites. As a result, the commercial service loop has been closed using both encrypted and non-encrypted signals.

The tests are the result of a collective effort involving teams and projects of AALECS, supported by the 1690 European Commission, the 5810 European GNSS Agency (GSA), 6780 the European Space Agency (ESA) and the Galileo operator, Spaceopal. The European Commission launched AALECS in January 2014 and it was awarded to a consortium led by GMV including CGI, Qascom, IFEN, Veripos and KU Leuven.  As part of the AALECS project, GMV and IFEN developed an early proof of concept platform aimed at testing external data transmission through offline means. The project will last for approximately two and a half years.

During a ten-day testing period, receivers located in Spain and Germany, showed the successful tracking and data demodulation of encrypted signals from the available Galileo satellites, with periods where all satellites transmitting E6 encrypted signals were tracked simultaneously. The tests verified the Galileo commercial service (CS) signal’s encryption functionalities, with the data received containing authentication and high accuracy information previously generated outside the Galileo system. This is an essential feature to ensuring Galileo’s high accuracy and authentication services – some of which may be commercial in nature.

The Galileo commercial service will deliver a range of added-value features, including positioning accurate to decimetre level and an authentication element, both of which allow for the development of innovative applications for professional or commercial use. The Galileo CS demonstrator began its proof of concept earlier this year, with early service expected to start in 2016.

Once operational, the CS will provide access to two additional encrypted signals on the E6 band, delivering a higher data throughput rate and increased accuracy. CS addresses the authentication and high-precision market segments and will deliver innovative services with improved performance and greater added value than those obtained through the open service.

For more information on companies in this article

Related Content

  • Viewpoint on the 2015 ITS World Congress
    September 10, 2014
    The next ITS World Congress will be held in stunning Bordeaux, France, from 5 – 9 October, 2015. Didier Gorteman, Ertico - ITS Europe, chair of the organising committee, explains how the event is shaping up. Q The theme of next year’s ITS World Congress in Bordeaux is “Towards intelligent mobility – Better use of space”. Could you give an overview of how this theme will shape the event? A The EPC chose this theme together with the host organisations. With the word space we want to make a link to space
  • CAR 2 CAR Communication Consortium and C-Roads Platform sign MOU on cooperative ITS
    June 21, 2017
    The CAR 2 CAR Communication Consortium and the C-Roads Platform have signed a Memorandum of Understanding which enables a close cooperation between the automotive industry, road authorities and road operators for preparing the deployment of initial cooperative ITS services across Europe by 2019.
  • GPS delivers accurate journey time data for UTC
    January 27, 2012
    A new solution developed as a consequence of the UK's Freeflow project fuses GPS and UTC loop data to give more accurate predictions of journey times, benefting network managers and travellers alike. By Matt Cowley and Gareth Jones, Trakm8 and John Polak and Rajesh Krishnan, Imperial College London
  • Integrated weather and traffic data aids winter maintenance
    October 10, 2012
    A US pooled fund study group has developed a system of software aimed at taking the concept of winter maintenance decision support to a new level – a scientific ‘one-stop-shop’ of weather and service performance data. This report is by Charles Chambers and Benjamin Hershey. With advancements in environmental technology come new systems that assist agencies with better management of winter roadway maintenance resources. In the late 1990s the US Federal Highway Administration (FHWA) began work developing a pr