Skip to main content

Galileo commercial service on track

The results of early proof of concept tests (EPOC) carried out by the Authentication and Accurate Location Experimentation with the Commercial Service (AALECS) show that the EPOC team has successfully tracked the encrypted Galileo E6-B and E6-C signals broadcast by Galileo satellites. As a result, the commercial service loop has been closed using both encrypted and non-encrypted signals. The tests are the result of a collective effort involving teams and projects of AALECS, supported by the European Comm
August 1, 2014 Read time: 2 mins

The results of early proof of concept tests (EPOC) carried out by the Authentication and Accurate Location Experimentation with the Commercial Service (AALECS) show that the EPOC team has successfully tracked the encrypted Galileo E6-B and E6-C signals broadcast by Galileo satellites. As a result, the commercial service loop has been closed using both encrypted and non-encrypted signals.

The tests are the result of a collective effort involving teams and projects of AALECS, supported by the 1690 European Commission, the 5810 European GNSS Agency (GSA), 6780 the European Space Agency (ESA) and the Galileo operator, Spaceopal. The European Commission launched AALECS in January 2014 and it was awarded to a consortium led by GMV including CGI, Qascom, IFEN, Veripos and KU Leuven.  As part of the AALECS project, GMV and IFEN developed an early proof of concept platform aimed at testing external data transmission through offline means. The project will last for approximately two and a half years.

During a ten-day testing period, receivers located in Spain and Germany, showed the successful tracking and data demodulation of encrypted signals from the available Galileo satellites, with periods where all satellites transmitting E6 encrypted signals were tracked simultaneously. The tests verified the Galileo commercial service (CS) signal’s encryption functionalities, with the data received containing authentication and high accuracy information previously generated outside the Galileo system. This is an essential feature to ensuring Galileo’s high accuracy and authentication services – some of which may be commercial in nature.

The Galileo commercial service will deliver a range of added-value features, including positioning accurate to decimetre level and an authentication element, both of which allow for the development of innovative applications for professional or commercial use. The Galileo CS demonstrator began its proof of concept earlier this year, with early service expected to start in 2016.

Once operational, the CS will provide access to two additional encrypted signals on the E6 band, delivering a higher data throughput rate and increased accuracy. CS addresses the authentication and high-precision market segments and will deliver innovative services with improved performance and greater added value than those obtained through the open service.

For more information on companies in this article

Related Content

  • Pan-European travel information is a reality – at a price
    November 26, 2013
    Pan-European, multi-modal traffic and travel information is now available, for drivers willing to pay for it. Jon Masters reports. Those able to afford a new car with all the latest options including internet connectivity can now look forward to getting detailed up-to-the-minute traffic information. They can also access multi-modal travel data, such as train times, plus weather forecasts and parking availability. Take the connected car to any Western European country and the system still works with live
  • InnoSenT sizes up ITR-3800
    December 5, 2022
    Small radar system is designed for intersection management and traffic monitoring
  • Artificial Intelligence applications for commercial vehicle operations
    December 28, 2021
    The combination of machine learning, deep neural networks and computer vision provides opportunities to address in new ways an increasing range of functions that are a part of commercial vehicle operations. Here, IRD’s Rish Malhotra details how.
  • Safer rail crossings with ESA satellites
    March 21, 2013
    Germany-headquartered Berner and Mattner is to carry out a feasibility study, SafeRail - Improving Safety at Railway Level Crossings, on behalf of the European Space Agency (ESA). The objective of the study, which is to be carried out within ESA’s Integrated Applications Promotion Program, is to determine the technical feasibility and economic viability of a space-based service using an integrated solution which employs different types of space assets in combination with already existing terrestrial techno