Skip to main content

Ford teams up with MIT and Stanford on automated driving

Building on the automated Ford Fusion Hybrid research vehicle unveiled last month, Ford is announcing new projects with Massachusetts Institute of Technology (MIT) and Stanford University to research and develop solutions to some of the technical challenges surrounding automated driving. Automated driving is a key component of Ford’s Blueprint for Mobility, which outlines what transportation will look like in 2025 and beyond, along with the technologies, business models and partnerships needed to get the
January 24, 2014 Read time: 3 mins
Building on the automated 278 Ford Fusion Hybrid research vehicle unveiled last month, Ford is announcing new projects with 2024 Massachusetts Institute of Technology (MIT) and Stanford University to research and develop solutions to some of the technical challenges surrounding automated driving.

Automated driving is a key component of Ford’s Blueprint for Mobility, which outlines what transportation will look like in 2025 and beyond, along with the technologies, business models and partnerships needed to get there. With its automated Fusion Hybrid research vehicle, Ford is exploring potential solutions for the longer-term societal, legislative and technological issues posed by a future of fully automated driving.

The research vehicle, with the addition of four LiDAR sensors to generate a real-time 3D map of the vehicle’s surrounding environment.

While the vehicle can sense objects around it using the LiDAR sensors, Ford’s research with MIT uses advanced algorithms to help the vehicle learn to predict where moving vehicles and pedestrians could be in the future, providing the vehicle with a better sense of the surrounding risks, enabling it to plan a path that will safely avoid pedestrians, vehicles and other moving objects.

Working with Stanford, Ford is exploring how the sensors could see around obstacles. Typically, when a driver’s view is blocked by an obstacle like a big truck, the driver will manoeuvre within the lane to take a peek around it and see what is ahead. Similarly, this research would enable the sensors to look ahead and make evasive manoeuvres if needed.

“To deliver on our vision for the future of mobility, we need to work with many new partners across the public and private sectors, and we need to start today,” said Paul Mascarenas, chief technical officer and vice president, Ford research and innovation. “Working with university partners like MIT and Stanford enables us to address some of the longer-term challenges surrounding automated driving while exploring more near-term solutions for delivering an even safer and more efficient driving experience.”

“Our goal is to provide the vehicle with common sense,” said Greg Stevens, global manager for driver assistance and active safety, Ford research and innovation. “Drivers are good at using the cues around them to predict what will happen next, and they know that what you can’t see is often as important as what you can see. Our goal in working with MIT and Stanford is to bring a similar type of intuition to the vehicle.”

For more information on companies in this article

Related Content

  • A new way to manage parking demand
    July 21, 2021
    Parking permit changes at one US campus could provide a model for encouraging active travel options post-Covid – and for transit ticketing adjustments as commuting patterns change
  • Iteris joins leadership circle for automated vehicle initiative
    September 10, 2014
    Iteris has joined the University of Michigan as one of 13 companies that includes Denso, Delphi, Econolite, Ford, GM, Nissan, Verizon and Toyota as a founding partner in its Mobility Transformation Center (MTC). The MTC will initiate and execute multiple research programs to advance the technology and policies surrounding new methods of transportation relating to smart vehicles and infrastructure. Iteris plans to collaborate with MTC and the select group of companies to guide the selection of specific re
  • Cubic’s director of mobile shares predictions for 2018
    December 22, 2017
    Robert Spogis, Cubic’s director of mobile shared his 2018 predictions on how the transport sector will be transformed through the adoption of a mobile infrastructure as its popularity grows and how transit apps will leverage AI/machine learning to provide more personalised commuter experiences. In addition, he estimated that mobile technology such as Near Field Communications and Bluetooth will provide simpler and more intuitive ticketing methods than traditional paper tickets.
  • Bringing AI into ITS: Artificial realities
    May 21, 2025
    AI can have a positive transformative effect on transportation safety and efficiency – but if you want creativity you still need a person, says Huawei