Skip to main content

Ford teams up with MIT and Stanford on automated driving

Building on the automated Ford Fusion Hybrid research vehicle unveiled last month, Ford is announcing new projects with Massachusetts Institute of Technology (MIT) and Stanford University to research and develop solutions to some of the technical challenges surrounding automated driving. Automated driving is a key component of Ford’s Blueprint for Mobility, which outlines what transportation will look like in 2025 and beyond, along with the technologies, business models and partnerships needed to get the
January 24, 2014 Read time: 3 mins
Building on the automated 278 Ford Fusion Hybrid research vehicle unveiled last month, Ford is announcing new projects with 2024 Massachusetts Institute of Technology (MIT) and Stanford University to research and develop solutions to some of the technical challenges surrounding automated driving.

Automated driving is a key component of Ford’s Blueprint for Mobility, which outlines what transportation will look like in 2025 and beyond, along with the technologies, business models and partnerships needed to get there. With its automated Fusion Hybrid research vehicle, Ford is exploring potential solutions for the longer-term societal, legislative and technological issues posed by a future of fully automated driving.

The research vehicle, with the addition of four LiDAR sensors to generate a real-time 3D map of the vehicle’s surrounding environment.

While the vehicle can sense objects around it using the LiDAR sensors, Ford’s research with MIT uses advanced algorithms to help the vehicle learn to predict where moving vehicles and pedestrians could be in the future, providing the vehicle with a better sense of the surrounding risks, enabling it to plan a path that will safely avoid pedestrians, vehicles and other moving objects.

Working with Stanford, Ford is exploring how the sensors could see around obstacles. Typically, when a driver’s view is blocked by an obstacle like a big truck, the driver will manoeuvre within the lane to take a peek around it and see what is ahead. Similarly, this research would enable the sensors to look ahead and make evasive manoeuvres if needed.

“To deliver on our vision for the future of mobility, we need to work with many new partners across the public and private sectors, and we need to start today,” said Paul Mascarenas, chief technical officer and vice president, Ford research and innovation. “Working with university partners like MIT and Stanford enables us to address some of the longer-term challenges surrounding automated driving while exploring more near-term solutions for delivering an even safer and more efficient driving experience.”

“Our goal is to provide the vehicle with common sense,” said Greg Stevens, global manager for driver assistance and active safety, Ford research and innovation. “Drivers are good at using the cues around them to predict what will happen next, and they know that what you can’t see is often as important as what you can see. Our goal in working with MIT and Stanford is to bring a similar type of intuition to the vehicle.”

Related Content

  • Praise for Obama’s FY2016 budget
    February 5, 2015
    US Transportation Secretary Anthony Foxx joined Google executive chairman Eric Schmidt at the Google Campus in California today where he discussed the budget and unveiled Beyond Traffic, a new US Department of Transportation (DOT) analysis outlining the trends that are likely to shape the needs of our transportation system over the next three decades. Beyond Traffic includes a strong focus on how ITS technologies, including vehicle-to-vehicle communication, vehicle automation and other new technologies are
  • 'Conservatism hampering ITS technical evolution'
    November 13, 2012
    Nick Lanigan, managing director of Clearview Traffic, considers the current outlook in the ITS sector from an SME's perspective. Interview with Jason Barnes. When times are hard, businesses can invest or cut. Either way, they need guidance from customers – governments – on where best to concentrate their efforts. Prolonged economic slowdown is currently an issue. A short recession, however sharp, would have left many industry players able to ride the bow-wave of governments’ multi-year spending on strategic
  • Go Denver opens up a world of seamless mobility and better data-driven decisions
    June 5, 2017
    Denver’s pioneering Go Denver mobility-as-a-service app has attracted 7,000 users in a matter of months. Geoff Hadwick heard how at ITS International’s recent conference. If Mobility-as-a-Service (MaaS) is ever going to work, it needs to have “one universal platform everywhere” according to Sean Mackin, former manager of parking and mobility services at the Denver transportation and mobility department and now Colorado branch manager for ABM Parking & Transportation. Speaking at the recent MaaS Market confe
  • When weather warnings get hyperlocal
    August 24, 2016
    David Crawford looks at new technologies to cope with the age-old problem of driving in bad weather. On the 10-year average, between 2005 and 2014 bad weather contributed to more than 1.5 million vehicle crashes in the US each year, resulting in more than 800,000 injuries and 7,400 deaths. These were the findings of analysis by Booz Allen Hamilton of NHTSA data which concluded that the loss of life, hospital treatment and damage to assets costs an annual average of $42bn.