Skip to main content

Ford teams up with MIT and Stanford on automated driving

Building on the automated Ford Fusion Hybrid research vehicle unveiled last month, Ford is announcing new projects with Massachusetts Institute of Technology (MIT) and Stanford University to research and develop solutions to some of the technical challenges surrounding automated driving. Automated driving is a key component of Ford’s Blueprint for Mobility, which outlines what transportation will look like in 2025 and beyond, along with the technologies, business models and partnerships needed to get the
January 24, 2014 Read time: 3 mins
Building on the automated 278 Ford Fusion Hybrid research vehicle unveiled last month, Ford is announcing new projects with 2024 Massachusetts Institute of Technology (MIT) and Stanford University to research and develop solutions to some of the technical challenges surrounding automated driving.

Automated driving is a key component of Ford’s Blueprint for Mobility, which outlines what transportation will look like in 2025 and beyond, along with the technologies, business models and partnerships needed to get there. With its automated Fusion Hybrid research vehicle, Ford is exploring potential solutions for the longer-term societal, legislative and technological issues posed by a future of fully automated driving.

The research vehicle, with the addition of four LiDAR sensors to generate a real-time 3D map of the vehicle’s surrounding environment.

While the vehicle can sense objects around it using the LiDAR sensors, Ford’s research with MIT uses advanced algorithms to help the vehicle learn to predict where moving vehicles and pedestrians could be in the future, providing the vehicle with a better sense of the surrounding risks, enabling it to plan a path that will safely avoid pedestrians, vehicles and other moving objects.

Working with Stanford, Ford is exploring how the sensors could see around obstacles. Typically, when a driver’s view is blocked by an obstacle like a big truck, the driver will manoeuvre within the lane to take a peek around it and see what is ahead. Similarly, this research would enable the sensors to look ahead and make evasive manoeuvres if needed.

“To deliver on our vision for the future of mobility, we need to work with many new partners across the public and private sectors, and we need to start today,” said Paul Mascarenas, chief technical officer and vice president, Ford research and innovation. “Working with university partners like MIT and Stanford enables us to address some of the longer-term challenges surrounding automated driving while exploring more near-term solutions for delivering an even safer and more efficient driving experience.”

“Our goal is to provide the vehicle with common sense,” said Greg Stevens, global manager for driver assistance and active safety, Ford research and innovation. “Drivers are good at using the cues around them to predict what will happen next, and they know that what you can’t see is often as important as what you can see. Our goal in working with MIT and Stanford is to bring a similar type of intuition to the vehicle.”

Related Content

  • Debating contactless toll charging by smartphone
    April 25, 2012
    Developments in the mass transit sector could provide indicators of potential for greater use of mobile consumer electronic devices for charging and tolling, according to Consult Hyperion’s Mike Burden. However, opinion among toll system suppliers is divided. Jason Barnes reports The combination of mass-market devices and their protocols, typified by smartphones featuring near field communication (NFC), points to some exciting cross-fertilisation possibilities in the charging and tolling sector, says Consul
  • Half of top OEMs work on LiDAR technology for ADAS
    October 13, 2015
    Light detection and ranging (LiDAR) technology, as part of an advanced driver assistance system (ADAS) sensor suite, will be mostly deployed for active safety functions with only 29 per cent fitted for fully automated driving purposes by 2021, according to Frost & Sullivan. Out of the top 13 original equipment manufacturers (OEMs), seven are working on automated driving passenger vehicles using a LiDAR. Frost & Sullivan’s latest analysis, LIDAR-based Strategies for Active Safety and Automated Driving from M
  • AV/ridesharing mix wins major auto investment
    May 5, 2016
    The US has a new trend in personal mobility and David Crawford takes a closer look. US automaker General Motors and ridesharer Lyft’s announcement of a strategic partnership aimed at delivering, over time, an integrated network of on-demand autonomous as well as conventional vehicles has taken the nation’s car industry from traditional manufacturing to new arenas.
  • IBTTA’s Jones sees turbulent times and a bright future for tolling
    November 10, 2017
    Colin Sowman talks to IBTTA’s Pat Jones about the future of tolling in a fast-changing world. Pat Jones may have been executive director and CEO of the International Bridge, Tunnel and Turnpike Association (IBTTA) for 15 years but in his words: “Never before have I seen so much change coming so fast in the transportation and tolling industry.” Amidst all this change, tolling companies are asked to provide funding for roadway building or improvements which will be repaid for over, say, a 30-year concess