Skip to main content

Ford teams up with MIT and Stanford on automated driving

Building on the automated Ford Fusion Hybrid research vehicle unveiled last month, Ford is announcing new projects with Massachusetts Institute of Technology (MIT) and Stanford University to research and develop solutions to some of the technical challenges surrounding automated driving. Automated driving is a key component of Ford’s Blueprint for Mobility, which outlines what transportation will look like in 2025 and beyond, along with the technologies, business models and partnerships needed to get the
January 24, 2014 Read time: 3 mins
Building on the automated 278 Ford Fusion Hybrid research vehicle unveiled last month, Ford is announcing new projects with 2024 Massachusetts Institute of Technology (MIT) and Stanford University to research and develop solutions to some of the technical challenges surrounding automated driving.

Automated driving is a key component of Ford’s Blueprint for Mobility, which outlines what transportation will look like in 2025 and beyond, along with the technologies, business models and partnerships needed to get there. With its automated Fusion Hybrid research vehicle, Ford is exploring potential solutions for the longer-term societal, legislative and technological issues posed by a future of fully automated driving.

The research vehicle, with the addition of four LiDAR sensors to generate a real-time 3D map of the vehicle’s surrounding environment.

While the vehicle can sense objects around it using the LiDAR sensors, Ford’s research with MIT uses advanced algorithms to help the vehicle learn to predict where moving vehicles and pedestrians could be in the future, providing the vehicle with a better sense of the surrounding risks, enabling it to plan a path that will safely avoid pedestrians, vehicles and other moving objects.

Working with Stanford, Ford is exploring how the sensors could see around obstacles. Typically, when a driver’s view is blocked by an obstacle like a big truck, the driver will manoeuvre within the lane to take a peek around it and see what is ahead. Similarly, this research would enable the sensors to look ahead and make evasive manoeuvres if needed.

“To deliver on our vision for the future of mobility, we need to work with many new partners across the public and private sectors, and we need to start today,” said Paul Mascarenas, chief technical officer and vice president, Ford research and innovation. “Working with university partners like MIT and Stanford enables us to address some of the longer-term challenges surrounding automated driving while exploring more near-term solutions for delivering an even safer and more efficient driving experience.”

“Our goal is to provide the vehicle with common sense,” said Greg Stevens, global manager for driver assistance and active safety, Ford research and innovation. “Drivers are good at using the cues around them to predict what will happen next, and they know that what you can’t see is often as important as what you can see. Our goal in working with MIT and Stanford is to bring a similar type of intuition to the vehicle.”

Related Content

  • August 5, 2022
    Peter Norton: “My fear is that the technology itself is mistaken for the answer”
    Peter Norton, author of Autonorama, tells Adam Hill why automakers kept the consumer dissatisfied, why Futurama got such a hold on the public imagination – and about how active travel can be promoted
  • January 25, 2021
    Tactile Mobility's virtual virtuous circle
    Virtual sensors will allow a safer driving experience and reduce road maintenance costs. Tactile Mobility’s Eitan Grosbard talks to David Arminas about what once seemed 'pure sci-fi'...
  • June 5, 2014
    The twisting path to enforcement’s future
    Survey reveals some division of views about enforcement’s future as Colin Sowman discovers. Technological advances and legislative changes pose many questions for those involved in road enforcement, ranging from the changing demands of privacy and data protection legislation to the practicalities on multi-speed enforcement. So to get the industry’s views ITS International took soundings on some of these bigger questions. In a world where many vehicles are fitted with GPS linked ‘black box’ telematics system
  • June 5, 2014
    TRW showcases driver assist systems
    TRW Automotive demonstrated its driver assist systems (DAS) and outlined expected trends in sensor technologies during the company's recent bi-annual Ride and Drive event at the Hockenheimring in Germany. According to Andrew Whydell, TRW Electronics’ director of product planning, DAS has and will continue to be a focal point for the automotive industry as governments and industry bodies strive to reduce road fatalities worldwide. For example, the European New Car Assessment Program (EuroNCAP) and the Ins