Skip to main content

Ford teams up with MIT and Stanford on automated driving

Building on the automated Ford Fusion Hybrid research vehicle unveiled last month, Ford is announcing new projects with Massachusetts Institute of Technology (MIT) and Stanford University to research and develop solutions to some of the technical challenges surrounding automated driving. Automated driving is a key component of Ford’s Blueprint for Mobility, which outlines what transportation will look like in 2025 and beyond, along with the technologies, business models and partnerships needed to get the
January 24, 2014 Read time: 3 mins
Building on the automated 278 Ford Fusion Hybrid research vehicle unveiled last month, Ford is announcing new projects with 2024 Massachusetts Institute of Technology (MIT) and Stanford University to research and develop solutions to some of the technical challenges surrounding automated driving.

Automated driving is a key component of Ford’s Blueprint for Mobility, which outlines what transportation will look like in 2025 and beyond, along with the technologies, business models and partnerships needed to get there. With its automated Fusion Hybrid research vehicle, Ford is exploring potential solutions for the longer-term societal, legislative and technological issues posed by a future of fully automated driving.

The research vehicle, with the addition of four LiDAR sensors to generate a real-time 3D map of the vehicle’s surrounding environment.

While the vehicle can sense objects around it using the LiDAR sensors, Ford’s research with MIT uses advanced algorithms to help the vehicle learn to predict where moving vehicles and pedestrians could be in the future, providing the vehicle with a better sense of the surrounding risks, enabling it to plan a path that will safely avoid pedestrians, vehicles and other moving objects.

Working with Stanford, Ford is exploring how the sensors could see around obstacles. Typically, when a driver’s view is blocked by an obstacle like a big truck, the driver will manoeuvre within the lane to take a peek around it and see what is ahead. Similarly, this research would enable the sensors to look ahead and make evasive manoeuvres if needed.

“To deliver on our vision for the future of mobility, we need to work with many new partners across the public and private sectors, and we need to start today,” said Paul Mascarenas, chief technical officer and vice president, Ford research and innovation. “Working with university partners like MIT and Stanford enables us to address some of the longer-term challenges surrounding automated driving while exploring more near-term solutions for delivering an even safer and more efficient driving experience.”

“Our goal is to provide the vehicle with common sense,” said Greg Stevens, global manager for driver assistance and active safety, Ford research and innovation. “Drivers are good at using the cues around them to predict what will happen next, and they know that what you can’t see is often as important as what you can see. Our goal in working with MIT and Stanford is to bring a similar type of intuition to the vehicle.”

For more information on companies in this article

Related Content

  • Utah DoT and Panasonic get connected
    August 30, 2019
    Utah is making smart roadways a priority and has entered a partnership with Panasonic to move things forward. Adam Hill asks Utah DoT to outline where the state is heading Utah Department of Transportation (UDoT) has form when it comes to connectivity. It built the first operational connected vehicle corridor in the US – and has now joined up with Panasonic to extend its operation. “When we work with technology providers, we are working together to get that win-win,” says Carlos Braceras, UDoT executi
  • Tier trial leans into computer vision
    August 5, 2021
    Micromobility firm Tier is to monitor modal shift to e-scooters across users in Dublin
  • Econolite keeps an open mind
    May 11, 2021
    If we’re going to take advantage of new technologies to improve safety, collaboration at the traffic management cabinet edge is vital, thinks Eric Raamot of Econolite
  • Six easy steps to security
    October 22, 2018
    As security threats become increasingly vast and varied, multinationals are beginning to see the need for an effective global security operations centre to protect their organisation. James I. Chong spells out what is required. You know you need a global security operations centre (GSOC) to support what you’ve built, identify threats, and prevent disasters before they happen - but how do you know if it’s truly effective? There’s no shortage of information coming into operation centres. Too often, it’s the