Skip to main content

Ford teams up with MIT and Stanford on automated driving

Building on the automated Ford Fusion Hybrid research vehicle unveiled last month, Ford is announcing new projects with Massachusetts Institute of Technology (MIT) and Stanford University to research and develop solutions to some of the technical challenges surrounding automated driving. Automated driving is a key component of Ford’s Blueprint for Mobility, which outlines what transportation will look like in 2025 and beyond, along with the technologies, business models and partnerships needed to get the
January 24, 2014 Read time: 3 mins
Building on the automated 278 Ford Fusion Hybrid research vehicle unveiled last month, Ford is announcing new projects with 2024 Massachusetts Institute of Technology (MIT) and Stanford University to research and develop solutions to some of the technical challenges surrounding automated driving.

Automated driving is a key component of Ford’s Blueprint for Mobility, which outlines what transportation will look like in 2025 and beyond, along with the technologies, business models and partnerships needed to get there. With its automated Fusion Hybrid research vehicle, Ford is exploring potential solutions for the longer-term societal, legislative and technological issues posed by a future of fully automated driving.

The research vehicle, with the addition of four LiDAR sensors to generate a real-time 3D map of the vehicle’s surrounding environment.

While the vehicle can sense objects around it using the LiDAR sensors, Ford’s research with MIT uses advanced algorithms to help the vehicle learn to predict where moving vehicles and pedestrians could be in the future, providing the vehicle with a better sense of the surrounding risks, enabling it to plan a path that will safely avoid pedestrians, vehicles and other moving objects.

Working with Stanford, Ford is exploring how the sensors could see around obstacles. Typically, when a driver’s view is blocked by an obstacle like a big truck, the driver will manoeuvre within the lane to take a peek around it and see what is ahead. Similarly, this research would enable the sensors to look ahead and make evasive manoeuvres if needed.

“To deliver on our vision for the future of mobility, we need to work with many new partners across the public and private sectors, and we need to start today,” said Paul Mascarenas, chief technical officer and vice president, Ford research and innovation. “Working with university partners like MIT and Stanford enables us to address some of the longer-term challenges surrounding automated driving while exploring more near-term solutions for delivering an even safer and more efficient driving experience.”

“Our goal is to provide the vehicle with common sense,” said Greg Stevens, global manager for driver assistance and active safety, Ford research and innovation. “Drivers are good at using the cues around them to predict what will happen next, and they know that what you can’t see is often as important as what you can see. Our goal in working with MIT and Stanford is to bring a similar type of intuition to the vehicle.”

For more information on companies in this article

Related Content

  • Timing is everything for EV charging
    January 23, 2020
    Electric vehicles are often promoted as a more sustainable alternative to diesel and petrol cars - but their arrival raises concerns about the strain which charging will put on the grid.
  • Green requirements of traffic video systems
    February 2, 2012
    Traficon's Head of Product and Application Management Robin Collaert offers up a discussion of the likely future green requirements of traffic video systems. At the most basic levels, ITS has the potential to significantly reduce the amounts of time which vehicles spend waiting at intersections, and less time spent waiting means less in the way of vehicular emissions. All of that will hardly come as news to most laypeople, let alone transport professionals. However, the reality is that even today too many r
  • Volvo’s new cars to get pedestrian and cyclist detection
    March 28, 2013
    By tracking moving objects, a new system from Volvo could help prevent accidents. The system uses a camera embedded in a car’s rear view mirror, combined with a radar instrument in the grill to scan the road ahead. If it sees an object, an onboard computer will determine whether it is a cyclist or a pedestrian, and prepare to apply the brakes if someone swerves out into traffic or darts across road. Many cars already come with safety systems that will brake if a collision with another vehicle or a pedestria
  • LG and Intel to develop and pilot 5G telematics technology
    February 26, 2016
    LG Electronics (LG) and Intel are to collaborate on the development of 5G-based telematics technology, the next generation of wireless technology for cars. The two companies will utilise research and development expertise and leadership from both companies with the aim of being first to market with 5G ready solutions. 5G telematics delivers data more than 33 times faster than 4G LTE with latency expected to drop to about one tenth of current speeds. Software can be updated at high speeds through OTA (Ove