Skip to main content

Ford teams up with MIT and Stanford on automated driving

Building on the automated Ford Fusion Hybrid research vehicle unveiled last month, Ford is announcing new projects with Massachusetts Institute of Technology (MIT) and Stanford University to research and develop solutions to some of the technical challenges surrounding automated driving. Automated driving is a key component of Ford’s Blueprint for Mobility, which outlines what transportation will look like in 2025 and beyond, along with the technologies, business models and partnerships needed to get the
January 24, 2014 Read time: 3 mins
Building on the automated 278 Ford Fusion Hybrid research vehicle unveiled last month, Ford is announcing new projects with 2024 Massachusetts Institute of Technology (MIT) and Stanford University to research and develop solutions to some of the technical challenges surrounding automated driving.

Automated driving is a key component of Ford’s Blueprint for Mobility, which outlines what transportation will look like in 2025 and beyond, along with the technologies, business models and partnerships needed to get there. With its automated Fusion Hybrid research vehicle, Ford is exploring potential solutions for the longer-term societal, legislative and technological issues posed by a future of fully automated driving.

The research vehicle, with the addition of four LiDAR sensors to generate a real-time 3D map of the vehicle’s surrounding environment.

While the vehicle can sense objects around it using the LiDAR sensors, Ford’s research with MIT uses advanced algorithms to help the vehicle learn to predict where moving vehicles and pedestrians could be in the future, providing the vehicle with a better sense of the surrounding risks, enabling it to plan a path that will safely avoid pedestrians, vehicles and other moving objects.

Working with Stanford, Ford is exploring how the sensors could see around obstacles. Typically, when a driver’s view is blocked by an obstacle like a big truck, the driver will manoeuvre within the lane to take a peek around it and see what is ahead. Similarly, this research would enable the sensors to look ahead and make evasive manoeuvres if needed.

“To deliver on our vision for the future of mobility, we need to work with many new partners across the public and private sectors, and we need to start today,” said Paul Mascarenas, chief technical officer and vice president, Ford research and innovation. “Working with university partners like MIT and Stanford enables us to address some of the longer-term challenges surrounding automated driving while exploring more near-term solutions for delivering an even safer and more efficient driving experience.”

“Our goal is to provide the vehicle with common sense,” said Greg Stevens, global manager for driver assistance and active safety, Ford research and innovation. “Drivers are good at using the cues around them to predict what will happen next, and they know that what you can’t see is often as important as what you can see. Our goal in working with MIT and Stanford is to bring a similar type of intuition to the vehicle.”

For more information on companies in this article

Related Content

  • Alliance stages North American back office interoperability trial
    December 4, 2013
    JJ Eden, President and CEO of the Alliance for Toll Interoperability, talks to Jason Barnes about the new inter-agency hub, which will facilitate national transactions When it comes to achieving interoperability, the sheer diversity of technologies in operation in the US is perhaps the tolling industry’s greatest defining characteristic and its biggest challenge. The situation is in stark contrast with some other regions of the world, such as Europe where the use of common front-end Dedicated Short-Range
  • Dutch autonomous vehicle project to develop platooning
    December 1, 2015
    The i-CAVE (integrated Cooperative Automated Vehicles) research program, led by Prof. Dr H. Nijmeijer of the Technical University of Eindhoven and funded through a recently awarded grant of US$4.2 million, aims to develop vehicles that can run both autonomously on dedicated roads or cooperatively on public roads. i-CAVE focuses on all important aspects involved in the development of such dual mode systems. Other participants include Delft University of Technology and University of Twente, 2getthere, DAF
  • Intelligent parking drone technology wins Siemens’ contest
    January 16, 2015
    His daily quest to find a parking space gave Amir Ehsani Zonouz, a student at the University of Massachusetts Dartmouth, USA, the incentive to look for an effective solution, leading to him winning the inaugural Siemens Mobility IDEA (Improving Design and Engineering for All) Contest. Zonouz proposed using quadcopters, or drones, which can quickly find unoccupied parking spaces, identify the shortest path to the closest free spot and immediately guide the driver to the space using a mobile app or direct
  • Infrastructure and the autonomous vehicle
    December 12, 2014
    Harold Worrall ponders the effect of autonomous vehicles on transportation infrastructure. For the last century the transportation industry has been focused on the supply of infrastructure to support the ever growing fleet of vehicles and the greater number of miles covered by each vehicle. Our focus has been planning, funding, designing, building and maintaining roadways. Politicians, engineers, planners, financial managers … all of us have had this focus. We have experienced demand growth since the first