Skip to main content

Ford teams up with MIT and Stanford on automated driving

Building on the automated Ford Fusion Hybrid research vehicle unveiled last month, Ford is announcing new projects with Massachusetts Institute of Technology (MIT) and Stanford University to research and develop solutions to some of the technical challenges surrounding automated driving. Automated driving is a key component of Ford’s Blueprint for Mobility, which outlines what transportation will look like in 2025 and beyond, along with the technologies, business models and partnerships needed to get the
January 24, 2014 Read time: 3 mins
Building on the automated 278 Ford Fusion Hybrid research vehicle unveiled last month, Ford is announcing new projects with 2024 Massachusetts Institute of Technology (MIT) and Stanford University to research and develop solutions to some of the technical challenges surrounding automated driving.

Automated driving is a key component of Ford’s Blueprint for Mobility, which outlines what transportation will look like in 2025 and beyond, along with the technologies, business models and partnerships needed to get there. With its automated Fusion Hybrid research vehicle, Ford is exploring potential solutions for the longer-term societal, legislative and technological issues posed by a future of fully automated driving.

The research vehicle, with the addition of four LiDAR sensors to generate a real-time 3D map of the vehicle’s surrounding environment.

While the vehicle can sense objects around it using the LiDAR sensors, Ford’s research with MIT uses advanced algorithms to help the vehicle learn to predict where moving vehicles and pedestrians could be in the future, providing the vehicle with a better sense of the surrounding risks, enabling it to plan a path that will safely avoid pedestrians, vehicles and other moving objects.

Working with Stanford, Ford is exploring how the sensors could see around obstacles. Typically, when a driver’s view is blocked by an obstacle like a big truck, the driver will manoeuvre within the lane to take a peek around it and see what is ahead. Similarly, this research would enable the sensors to look ahead and make evasive manoeuvres if needed.

“To deliver on our vision for the future of mobility, we need to work with many new partners across the public and private sectors, and we need to start today,” said Paul Mascarenas, chief technical officer and vice president, Ford research and innovation. “Working with university partners like MIT and Stanford enables us to address some of the longer-term challenges surrounding automated driving while exploring more near-term solutions for delivering an even safer and more efficient driving experience.”

“Our goal is to provide the vehicle with common sense,” said Greg Stevens, global manager for driver assistance and active safety, Ford research and innovation. “Drivers are good at using the cues around them to predict what will happen next, and they know that what you can’t see is often as important as what you can see. Our goal in working with MIT and Stanford is to bring a similar type of intuition to the vehicle.”

Related Content

  • September 30, 2020
    Parifex speed cameras: picture perfect
    From speed cameras to smart cities, image processing and AI – Parifex is not short of ambition. Nathalie Deguen tells Adam Hill where the French company is heading next
  • February 3, 2012
    First-of-a-kind collaboration to analyse real-time traffic patterns and individual commuter travel history
    IBM has announced a new collaboration with the California Department of Transportation (Caltrans) and California Center for Innovative Transportation (CCIT), a research institute at the University of California, Berkeley, to develop an intelligent transportation solution that will help commuters avoid congestion and enable transportation agencies to better understand, predict and manage traffic flow.
  • March 31, 2017
    Parsons and MIT Host Smart Cities Workshop
    Parsons and the Massachusetts Institute of Technology’s (MIT) Department of Civil and Environmental Engineering recently hosted the one-day Infrastructure, Smart Cities, and Transportation workshop with the aim of exploring the parallels between ongoing research and current industry needs. Markus Buehler, head of MIT’s Department of Civil and Environmental Engineering said the department was focused on addressing the most challenging issues in infrastructure and the environment. “Many of the ideas discus
  • February 27, 2013
    The benefits of combining enforcement and traffic management
    Jason Barnes considers how combining enforcement equipment with other traffic management technologies might benefit our future – if only the will were really in place to do so. During the ITS World Congress in Vienna in October last year, Navtech Radar and Vysion­ics ITS announced a strategic partnership that would combine the expertise of Navtech in millimetre-wave wide-area surveillance technology with Vysionics’ machine vision-based automatic number plate recognition (ANPR) and average speed measurement