Skip to main content

Ford Research looking to help drivers manage stressful situations on the road

Engineers in the Ford Research and Innovation labs are developing ways to help the driver stay focused in busy situations by intelligently managing incoming communications. Data from the sensing systems of driver-assist technologies can be used to determine the amount of external demand and workload upon a driver at any given time including traffic and road conditions. In addition, Ford continues its health and wellness research with the development of a biometric seat, seat belt and steering wheel that can
June 28, 2012 Read time: 4 mins
RSSEngineers in the 278 Ford Research and Innovation labs are developing ways to help the driver stay focused in busy situations by intelligently managing incoming communications.

Data from the sensing systems of driver-assist technologies can be used to determine the amount of external demand and workload upon a driver at any given time including traffic and road conditions. In addition, Ford continues its health and wellness research with the development of a biometric seat, seat belt and steering wheel that can monitor the condition of the driver to help add an even more specific estimate of the driver’s state of being.

The driver workload estimator is an algorithm using real-time data from existing sensors such as radar and cameras combined with input from the driver’s use of the throttle, brakes and steering wheel. The result is an intelligent system enabling management of in-vehicle communications based on the assessed workload of the driving situation.

For example, the side-looking radar sensors used for the Blind Spot Information System (BLIS) and the forward-looking camera for the Lane-Keeping System are on watch even when there is no active warning provided to the driver. These signals could indicate there is a significant amount of traffic in the lane that you are merging into while entering a highway.

Combine that knowledge with the fact that the driver has increased throttle pedal pressure to speed up, and the workload estimate could be high enough to determine it isn’t a very good time for an incoming phone call to ring inside the cabin.

The car could intelligently apply the “Do Not Disturb” feature that is already available as part of MyFord Touch, helping the driver stay focused on the road during the high-demand situation.

“In addition to using existing vehicle data to estimate demand on the driver, we’re researching ways to get an even better understanding of the stress level of the driver,” says Gary Strumolo, manager of vehicle design and infotronics, Ford Research and Innovation. “Biometric or health information of the driver can help us better tailor the experience when behind the wheel.”

Turning new biometric sensors toward the driver will help to create a more complete picture of the driver workload. The research team has built a biometric seating buck to test a number of different sensors and gather data on how drivers respond to a variety of inputs for a driver behaviour model.

The experimental system adds several sensors to the steering wheel rim and spokes to get more detailed driver information. Anyone who has used modern exercise equipment like treadmills and stair climbers will be familiar with the metal pads on the rim that can be used to measure the driver’s heart rate.

Infrared sensors on the steering wheel monitor the palms of a driver’s hands as well as his or her face looking for changes in temperature. A downward-looking infrared sensor under the steering column measures the cabin temperature to provide a baseline for comparing changes in the driver’s temperature. The final sensor is embedded in the seat belt to assess the driver’s breathing rate.

With a more complete picture of the driver’s health and wellness blended with knowledge of what is happening outside the vehicle, the car will have the intelligence to dynamically adjust the alerts provided to the driver and filter interruptions. With the driver occupied in heavy traffic, the vehicle control system could increase the warning times for forward collision alerts and automatically filter out phone calls and messages, allowing the driver more time to respond. On the other hand, an alert driver on an open highway could receive incoming calls.

“While these features are still in research, they show significant opportunity for us to leverage data already being captured by the vehicle and apply an intelligent decision-making system to simplify the driving experience,” adds Strumolo.

For more information on companies in this article

Related Content

  • Vision technology: the future in focus
    November 23, 2018
    Just a few years ago, terms such as ‘embedded’ and ‘polarisation’ were buzzwords. But now they are real and present examples of vision technology in action – and, Adam Hill finds, the ITS industry is waking up to a number of possible applications Every aspect of the intelligent transportation systems industry moves quickly – but developments in camera technology change with a rapidity which can appear quite bewildering. And with ITS providers constantly searching for an edge against fierce competitio
  • Digital Light Processing transforms travel information
    July 19, 2012
    David Crawford investigates the potential of new projection technology. Fifty years on from its invention of the microchip, US company Texas Instruments (TI) has compressed the technology into a surface area of just 4.3mm. As such, it forms the heart of a new Pico Digital Light Processing (DLP) system that is set to transform travel information delivery for millions of users on the move - by making it projectable.
  • Scorecard scores
    July 30, 2012
    For situations where normal cost-benefit analysis doesn't work, TNO has developed Scorecard. How can governments ascertain the best strategy for implementing innovative solutions that are influenced by knowledge and technology as well as political context, human behaviour, impact on process and organisation? TNO, the Netherlands-headquartered applied scientific research organisation, has created a scorecard that helps assess developments like SAFESPOT, the major European project which is designing cooperati
  • Data exploits parking potential
    March 11, 2015
    David Crawford parallel parks with innovations in two continents. Surveys of US cities indicate that drivers searching for parking can account for up to 37% of all urban traffic congestion. A 2011 study by IBM of 20 cities around the world found that nearly six out of ten drivers had abandoned their search for a parking space at least once; while motorists generally spent on average 20 minutes looking for a sought-after spot.