Skip to main content

Ford equips autonomous cars with night vision

Ford recently conducted tests at its Arizona proving ground to determine how autonomous cars could navigate at night without headlights. According to Ford, it’s an important development, in that it shows that even without cameras, which rely on light, Ford’s LiDAR, working with the car’s virtual driver software, is robust enough to steer around winding roads. While it’s ideal to have all three modes of sensors, radar, cameras and LiDAR, the latter can function independently on roads without stoplights.
April 13, 2016 Read time: 2 mins
278 Ford recently conducted tests at its Arizona proving ground to determine how autonomous cars could navigate at night without headlights.

According to Ford, it’s an important development, in that it shows that even without cameras, which rely on light, Ford’s LiDAR, working with the car’s virtual driver software, is robust enough to steer around winding roads. While it’s ideal to have all three modes of sensors, radar, cameras and LiDAR, the latter can function independently on roads without stoplights.

To navigate in the dark, Ford self-driving cars use high-resolution 3D maps, complete with information about the road, road markings, geography, topography and landmarks like signs, buildings and trees. The vehicle uses LiDAR pulses to pinpoint itself on the map in real time. Additional data from radar gets fused with that of LiDAR to complete the full sensing capability of the autonomous vehicle.

For the desert test, Ford engineers, wearing night-vision goggles, monitored the Fusion from inside and outside the vehicle. Night vision allowed them to see the LiDAR doing its job in the form of a grid of infrared laser beams projected around the vehicle as it drove past. LiDAR sensors shoot out 2.8 million laser pulses a second to precisely scan the surrounding environment.

Wayne Williams, a Ford research scientist and engineer was in the car following it’s progression in real time using computer monitoring. He claims it stayed precisely on track along the winding roads.

“Thanks to LiDAR, the test cars aren’t reliant on the sun shining, nor cameras detecting painted white lines on the asphalt,” says Jim McBride, Ford technical leader for autonomous vehicles. “In fact, LiDAR allows autonomous cars to drive just as well in the dark as they do in the light of day.”

Related Content

  • March 7, 2019
    Volvo tests autonomous electric bus on roads at Singapore campus
    Volvo is trialling its 12m long autonomous electric bus on roads at the Nanyang Technological University (NTU) in Singapore ahead of an anticipated release onto public roads. The Volvo 7900 Electric single-decker bus can carry approximately 80 passengers and is the first of two buses being trialled at the NTU’s Centre of Excellence for Testing and Research of Autonomous vehicles (CETRAN) before being extended beyond the campus. CETRAN is staffed by NTU scientists and features a track which replicates var
  • March 16, 2020
    Waymo redesigns fifth generation hardware sensor suite
    Waymo has redesigned its fifth-generation hardware sensor suite with the aim of enabling the scaled deployment of Waymo Driver autonomous vehicles (AVs).
  • May 18, 2017
    VTT's autonomous cars take to public roads
    The autonomous cars developed by VTT Technical Research Centre of Finland are able to exchange information with each other and their driving environment. They are able to follow a pre-programmed route and avoid collisions with sudden obstacles without input from the driver. The cars currently require the lane markings or sides of the road to be visible. However, by 2020, VTT says the cars will be driving in more demanding conditions on roads covered in gravel and snow. The autonomous cars feature a thermal
  • March 14, 2023
    Watch your step: the sidewalk robots are here
    The way we order and pay for goods has changed radically – but what about how those goods are delivered? Gordon Feller looks at how sidewalk robots might reshape the urban landscape