Skip to main content

Ford equips autonomous cars with night vision

Ford recently conducted tests at its Arizona proving ground to determine how autonomous cars could navigate at night without headlights. According to Ford, it’s an important development, in that it shows that even without cameras, which rely on light, Ford’s LiDAR, working with the car’s virtual driver software, is robust enough to steer around winding roads. While it’s ideal to have all three modes of sensors, radar, cameras and LiDAR, the latter can function independently on roads without stoplights.
April 13, 2016 Read time: 2 mins
278 Ford recently conducted tests at its Arizona proving ground to determine how autonomous cars could navigate at night without headlights.

According to Ford, it’s an important development, in that it shows that even without cameras, which rely on light, Ford’s LiDAR, working with the car’s virtual driver software, is robust enough to steer around winding roads. While it’s ideal to have all three modes of sensors, radar, cameras and LiDAR, the latter can function independently on roads without stoplights.

To navigate in the dark, Ford self-driving cars use high-resolution 3D maps, complete with information about the road, road markings, geography, topography and landmarks like signs, buildings and trees. The vehicle uses LiDAR pulses to pinpoint itself on the map in real time. Additional data from radar gets fused with that of LiDAR to complete the full sensing capability of the autonomous vehicle.

For the desert test, Ford engineers, wearing night-vision goggles, monitored the Fusion from inside and outside the vehicle. Night vision allowed them to see the LiDAR doing its job in the form of a grid of infrared laser beams projected around the vehicle as it drove past. LiDAR sensors shoot out 2.8 million laser pulses a second to precisely scan the surrounding environment.

Wayne Williams, a Ford research scientist and engineer was in the car following it’s progression in real time using computer monitoring. He claims it stayed precisely on track along the winding roads.

“Thanks to LiDAR, the test cars aren’t reliant on the sun shining, nor cameras detecting painted white lines on the asphalt,” says Jim McBride, Ford technical leader for autonomous vehicles. “In fact, LiDAR allows autonomous cars to drive just as well in the dark as they do in the light of day.”

Related Content

  • February 21, 2017
    Ford developing pothole warning system
    Automaker Ford has said it is developing technology which detects the presence of potholes and alerts drivers to their location. Engineers at the Ford Research and Innovation Centre in Aachen, Germany, are experimenting with a crowd-sourced virtual pothole map, with testing due to start later this year. The map would show drivers, in real-time, on in-car displays, where potholes are, how bad they are and suggest alternative routes. “A virtual pothole map could highlight a new pothole the minute it ap
  • March 14, 2022
    Lidar: beginning to see the light
    Lidar feels like a technology whose time has come – but why now? Adam Hill talks to manufacturers, vendors and system integrators in the sector to assess the state of play and to find out what comes next
  • September 7, 2015
    Pioneer develops low cost 3D-LIDAR for autonomous cars
    Drawing on its experience with optical disc technologies consumer electronics giant, Pioneer Corporation is developing a 3D-LIDAR (light detection and ranging) compact, high performance low-cost sensor for autonomous vehicles. The company has completed trial manufacture of the sensor and will begin in-car trials in 2016. During the in-car trials, Pioneer will launch advanced map creation using mapping vehicles fitted with 3D-LiDAR, with Increment P Corporation, its map creation subsidiary. In the near fu
  • March 25, 2020
    ProPart AV trial crosses the line
    The perceived safety benefits of autonomous vehicles can only be realised with precise positioning. Ben Spencer reports from Sweden on work by a European consortium which aims to use the technology to allow a truck to carry out an automated lane change