Skip to main content

Ford develops heart rate monitoring seat

Ford engineers have developed a car seat that can monitor a driver's heartbeat, opening the door to a wealth of health, convenience and even life-saving potential. A joint project undertaken by experts from Ford's European Research and Innovation Centre in Aachen, Germany and Rheinisch-Westfalische Technische Hochschule (RWTH) Aachen University, the seat uses six special embedded sensors to detect electrical impulses generated by the heart.
May 16, 2012 Read time: 2 mins
278 Ford engineers have developed a car seat that can monitor a driver's heartbeat, opening the door to a wealth of health, convenience and even life-saving potential. A joint project undertaken by experts from Ford's European Research and Innovation Centre in Aachen, Germany and Rheinisch-Westfalische Technische Hochschule (RWTH) Aachen University, the seat uses six special embedded sensors to detect electrical impulses generated by the heart.

"Although currently still a research project, the heart rate monitor technology developed by Ford and RWTH Aachen University could prove to be a hugely important breakthrough for Ford drivers, and not just in terms of the ability to monitor the hearts of those known to be at risk," said Dr. Achim Lindner, Ford European Research and Innovation Centre medical officer.

"As always in medicine, the earlier a condition is detected the easier it is to treat and this technology even has the potential to be instrumental in diagnosing conditions drivers were previously unaware they had."

Data collected by the sensors, for example, could be analysed by medical experts or onboard computer software. Possibilities therefore abound, notes Lindner, from linking to remote medical services and Ford vehicle safety systems to even providing real-time health information and alerts of imminent cardiovascular issues such as a heart attack.

For more information on companies in this article

Related Content

  • Keeping people on track is RATP’s raison d’etre
    June 14, 2018
    In Paris, RATP Group’s autonomous Metro Line 1 is carrying 750,000 people a day across the city. Ben Spencer is invited into the control room to take a look at how the system works Paris is visited by millions of tourists each year, keen to see for themselves stunning attractions such as the Eiffel Tower, Arc de Triomphe, Notre-Dame, the Louvre, the Seine and all the rest. But while the best-known sites of the City of Light tend to be on the surface, there is a lot going on below those iconic grand boule
  • Regional, national managed enforcement for developing nations
    February 3, 2012
    Robot is offering nationwide enforcement services to both developed and developing countries.
  • Terrestrial solution to stellar shortcomings
    December 5, 2013
    Inherent weaknesses in satellite communications are leading several countries to re-evaluate terrestrial-based backup systems. There is a tale frequently told in satellite navigation circles, of how landing systems at Newark Airport were disrupted by a truck driver using GPS jamming equipment as he drove along the New Jersey Turnpike. While there was no threat to flight safety as the interference to GPS reference stations being tested, the story highlights how apparently benign threats have the potential t
  • Does ADAS create as many problems as it solves
    September 23, 2014
    Victoria Banks and Neville Stanton [1] of Southampton University’s Transportation Research Group examine the real impact of creeping driver automation. Safety research suggests that 90% of accidents are thought to be a result of driver inattentiveness to unpredictable or incomplete information and the vision is that highly automated vehicles will lead to accident-free driving in the future.