Skip to main content

Ford develops heart rate monitoring seat

Ford engineers have developed a car seat that can monitor a driver's heartbeat, opening the door to a wealth of health, convenience and even life-saving potential. A joint project undertaken by experts from Ford's European Research and Innovation Centre in Aachen, Germany and Rheinisch-Westfalische Technische Hochschule (RWTH) Aachen University, the seat uses six special embedded sensors to detect electrical impulses generated by the heart.
May 16, 2012 Read time: 2 mins
278 Ford engineers have developed a car seat that can monitor a driver's heartbeat, opening the door to a wealth of health, convenience and even life-saving potential. A joint project undertaken by experts from Ford's European Research and Innovation Centre in Aachen, Germany and Rheinisch-Westfalische Technische Hochschule (RWTH) Aachen University, the seat uses six special embedded sensors to detect electrical impulses generated by the heart.

"Although currently still a research project, the heart rate monitor technology developed by Ford and RWTH Aachen University could prove to be a hugely important breakthrough for Ford drivers, and not just in terms of the ability to monitor the hearts of those known to be at risk," said Dr. Achim Lindner, Ford European Research and Innovation Centre medical officer.

"As always in medicine, the earlier a condition is detected the easier it is to treat and this technology even has the potential to be instrumental in diagnosing conditions drivers were previously unaware they had."

Data collected by the sensors, for example, could be analysed by medical experts or onboard computer software. Possibilities therefore abound, notes Lindner, from linking to remote medical services and Ford vehicle safety systems to even providing real-time health information and alerts of imminent cardiovascular issues such as a heart attack.

For more information on companies in this article

Related Content

  • Loop detection still has a part in traffic management
    March 2, 2012
    Bob Lees, co-founder of Diamond Consulting Services, on why the loop detector just refuses to go away. The more strident proponents of newer and emergent detection technologies are quick to highlight what they see as the disadvantages, and hence the imminent passing, of the humble inductive loop. The more prosaic will acknowledge that loops continue to have a part to play in traffic management, falling back on the assertion that it is all a question of application. And yet year after year the loop, despite
  • Tighten up on cyber security before hackers infiltrate ITS infrastructure
    October 19, 2015
    This year’s ITS World Congress in Bordeaux will have three sessions dedicated to cyber security and the issue will also be addressed under connected and automated vehicles categories. Jon Masters finds out why. American security researchers Charlie Miller and Chris Valasek attracted international press coverage recently when they demonstrated how they could hack into and take control of a vehicle from a remote laptop. While the implications are clearly serious for vehicle manufacturers, highway and transpor
  • TRA 2018: Vienna conference highlights
    June 5, 2018
    Digitalisation of transport systems, the regulation of new technologies and more charging points for electric vehicles in cities were among the talking points at this year’s Transport Research Arena conference. Alan Dron sifts through the highlights in Vienna. More than 3,000 transport sector specialists converged on TRA 2018, where the four-day event’s agenda included scores of topics covering regulation, technology and the effect of the digitalisation of road transport systems. Who should control those
  • Airborne traffic monitoring - the future?
    March 1, 2013
    A new frontier in the quest to monitor road traffic is opening up… but using airborne drones to reduce the jams comes with some thorny issues. Chris Tindall reports. Imagine if you could rely on a system that provided all the data you needed to regulate traffic flow, route vehicles and respond swiftly to emergencies for a fraction of the cost of piloting a helicopter. That system exists, but as engineers and traffic managers start to explore the potential of unmanned aerial vehicles (UAVs) – more commonly k