Skip to main content

Ford develops heart rate monitoring seat

Ford engineers have developed a car seat that can monitor a driver's heartbeat, opening the door to a wealth of health, convenience and even life-saving potential. A joint project undertaken by experts from Ford's European Research and Innovation Centre in Aachen, Germany and Rheinisch-Westfalische Technische Hochschule (RWTH) Aachen University, the seat uses six special embedded sensors to detect electrical impulses generated by the heart.
May 16, 2012 Read time: 2 mins
278 Ford engineers have developed a car seat that can monitor a driver's heartbeat, opening the door to a wealth of health, convenience and even life-saving potential. A joint project undertaken by experts from Ford's European Research and Innovation Centre in Aachen, Germany and Rheinisch-Westfalische Technische Hochschule (RWTH) Aachen University, the seat uses six special embedded sensors to detect electrical impulses generated by the heart.

"Although currently still a research project, the heart rate monitor technology developed by Ford and RWTH Aachen University could prove to be a hugely important breakthrough for Ford drivers, and not just in terms of the ability to monitor the hearts of those known to be at risk," said Dr. Achim Lindner, Ford European Research and Innovation Centre medical officer.

"As always in medicine, the earlier a condition is detected the easier it is to treat and this technology even has the potential to be instrumental in diagnosing conditions drivers were previously unaware they had."

Data collected by the sensors, for example, could be analysed by medical experts or onboard computer software. Possibilities therefore abound, notes Lindner, from linking to remote medical services and Ford vehicle safety systems to even providing real-time health information and alerts of imminent cardiovascular issues such as a heart attack.

For more information on companies in this article

Related Content

  • Keeping a weather eye on road conditions
    September 26, 2014
    Drive C2X has shown that advanced warning of poor road conditions could cut fatalities, as David Crawford explains. Connected vehicle (CV)-based warning technologies could mean 6% fewer deaths and 5% fewer injuries in road traffic accidents in Europe, according to the final results of the European Commission (EC) co-funded DRIVE C2X project. According to the European Centre for Information and Communication Technologies (EICT) which provided management support, these “prove that CV systems work and can hav
  • SafeRide: it’s time to act on cyberattacks
    May 10, 2019
    Cyber threats are increasing rapidly and conventional security measures are unable to keep up. Ben Spencer talks to SafeRide’s Gil Reiter about what OEMs can do now As more vehicles become connected, so the potential threats to their security increase. Gil Reiter, vice president of product management for security firm SafeRide, says the biggest ‘attack surface’ for connected cars is their internet connectivity - and the in-vehicle applications that use the internet connection. “The most vulnerable co
  • MoceanLab discovers new Covid car-share use
    October 20, 2020
    The coronavirus pandemic has prompted some radical re-thinking of mobility services. Ben Spencer hears how MoceanLab car-share vehicles are delivering care to LA's homeless
  • Cost Benefit: Utah traffic light scheme pays dividends
    March 15, 2019
    A traffic signal control scheme in Utah is being taken up by other US authorities. David Crawford finds out how the Beehive State is leading the way in DoT and driver savings Growing numbers of US state departments of transportation (DoTs) and their road users are gaining real financial benefits from an advanced approach to traffic signal monitoring recently developed in Utah. Central to the system is its use of automated traffic signal performance measures (ATSPM) technology, brought in to improve th