Skip to main content

Finland working on autonomous trucks

As part of the European DESERVE project, VTT Technical Research Centre of Finland, Iveco Finland and TTS-Kehitys are developing a new software platform which will bring autonomous driving features to trucks. The truck of the future will sense nearby obstacles and possible safety risks and inform the driver. The vehicle will also monitor driving behaviour and draw the driver's attention to possible hazardous situations. TTS is implementing and testing the safety equipment development platform. A driver mo
June 19, 2015 Read time: 2 mins
As part of the European DESERVE project, 814 VTT Technical Research Centre of Finland, Iveco Finland and TTS-Kehitys are developing a new software platform which will bring autonomous driving features to trucks. The truck of the future will sense nearby obstacles and possible safety risks and inform the driver. The vehicle will also monitor driving behaviour and draw the driver's attention to possible hazardous situations.

TTS is implementing and testing the safety equipment development platform. A driver monitoring functionality developed by VTT based on eye tracking is also utilised. TTS will that the test results correspond to what would happen on real roads and can be applied in practice.

Iveco Finland provided a truck, with a very highly developed camera system, for the project. This is being complemented with a 360-degree camera system, three 3D cameras, nine short-range radars and three in-vehicle cameras. With these, the driver can obtain real-time information on obstacles and possible safety risks around the car. In addition, the in-vehicle cameras monitor the driver's attentiveness and driving behaviour.

The project, which began in 2012, will end in February 2016 and the first versions of the systems should be ready for installation in vehicles within two years.

Related Content

  • March 16, 2016
    Radar reinforces detection efficiency
    Radar can have distinct advantages in some transport-related situations as Colin Sowman found out during a visit to Navtech Radar. Despite tremendous advances in machine vision techniques, the accuracy and reliability of camera-based detection systems suffer during periods of poor visibility where other technologies may offer an alternative. Radar is one such technology. It too has seen significant development in recent years and according to Navtech Radar, the technology can often fulfil detection and moni
  • April 13, 2016
    Ford equips autonomous cars with night vision
    Ford recently conducted tests at its Arizona proving ground to determine how autonomous cars could navigate at night without headlights. According to Ford, it’s an important development, in that it shows that even without cameras, which rely on light, Ford’s LiDAR, working with the car’s virtual driver software, is robust enough to steer around winding roads. While it’s ideal to have all three modes of sensors, radar, cameras and LiDAR, the latter can function independently on roads without stoplights.
  • October 17, 2019
    Getting C/AVs from pipedream to reality
    The UK government has suggested that driverless cars could be on the roads by 2021. But designers and engineers are grappling with a number of difficult issues, muses Chris Hayhurst of MathWorks Earlier this year, the UK government made the bold statement that by 2021, driverless cars will be on the UK’s roads. But is this an achievable reality? Driverless technology already has its use cases on our roads, with levels of autonomy ranked on a scale. At one end of the spectrum, level 1 is defined by th
  • March 1, 2013
    Airborne traffic monitoring - the future?
    A new frontier in the quest to monitor road traffic is opening up… but using airborne drones to reduce the jams comes with some thorny issues. Chris Tindall reports. Imagine if you could rely on a system that provided all the data you needed to regulate traffic flow, route vehicles and respond swiftly to emergencies for a fraction of the cost of piloting a helicopter. That system exists, but as engineers and traffic managers start to explore the potential of unmanned aerial vehicles (UAVs) – more commonly k