Skip to main content

EU AdaptIVe automated driving project begins work

The European research project AdaptIVe (Automated Driving Applications & Technologies for Intelligent Vehicles), a consortium of 29 partners, began work on 1 February. It aims to achieve breakthrough advances that will lead to more efficient and safe automated driving. The consortium, led by Volkswagen, consists of ten major automotive manufacturers, suppliers, research institutes and universities and small and medium-sized businesses. The project has a budget of US$33.7 million and is funded by the Eu
February 5, 2014 Read time: 2 mins
The European research project AdaptIVe (Automated Driving Applications & Technologies for Intelligent Vehicles), a consortium of 29 partners, began work on 1 February.  It aims to achieve breakthrough advances that will lead to more efficient and safe automated driving.

The consortium, led by 994 Volkswagen, consists of ten major automotive manufacturers, suppliers, research institutes and universities and small and medium-sized businesses. The project has a budget of US$33.7 million and is funded by the 1690 European Commission.

Automated vehicles will contribute towards enhanced traffic safety by assisting drivers and minimising human errors. They are also expected to make traffic flow more efficiently, ensuring optimal driving conditions with minimal speed variations in the traffic flow.

“This complex field of research will not only utilise onboard sensors, but also cooperative elements such as vehicle-to-vehicle and vehicle-to-infrastructure communication. Therefore, I am glad that most European automotive companies are cooperating in this pre-competitive field to create new solutions for automated driving,” says Professor Jürgen Leohold, executive director of Volkswagen Group Research.

During the projects 42 months’ duration, the partners will develop and test new functionalities for cars and trucks, offering both partially automated and highly automated driving on motorways, in urban scenarios, and for close-distance manoeuvres.

The project will focus on achieving ideal cooperative interaction between the driver and the automated system by using advanced sensors, cooperative vehicle technologies and adaptive strategies in which the level of automation is dynamically adapted to the situation and driver status.

Seven cars and one truck will demonstrate various combinations of automated functions. In addition to addressing technology development aspects, the project will also explore legal implications for manufacturers and drivers - in particular regarding product liability and road traffic laws.

Related Content

  • March 30, 2020
    Autopilot highlights shape of Things
    Driverless vehicles require rich data to operate safely, and a European consortium is harnessing the Internet of Things to help.
  • January 24, 2014
    Ford teams up with MIT and Stanford on automated driving
    Building on the automated Ford Fusion Hybrid research vehicle unveiled last month, Ford is announcing new projects with Massachusetts Institute of Technology (MIT) and Stanford University to research and develop solutions to some of the technical challenges surrounding automated driving. Automated driving is a key component of Ford’s Blueprint for Mobility, which outlines what transportation will look like in 2025 and beyond, along with the technologies, business models and partnerships needed to get the
  • May 18, 2016
    EU aims to turn ITS theory into practice
    Gareth Horton explains how the European Commission’s Transport Research and Innovation Portal can help expedite research and turn theory into practice. Over the next few years Europe’s transport systems face a number of challenges, such as improving urban mobility while at the same time protecting population health and accommodating the accessibility needs of an ageing but active population.
  • May 16, 2014
    UR:BAN developing driver assistance and traffic management systems
    European vehicle manufacturers, including BMW, Opel and Mercedes-Benz and MAN, are taking part in a new project to develop advanced driver assistance and traffic management systems for cities. The focus is on the human element in all aspects of mobility and traffic and takes the form of three approaches: Cognitive Assistance; Networked Traffic Systems; and Human Factors in Traffic. The four-year UR:BAN project (from a German acronym for Urban Space: User-oriented assistance systems and network managemen