Skip to main content

The Dutch revolution in smart EV charging

By turning itself into one huge Living Lab for Smart Charging of electric vehicles, the Netherlands aims to become the international frontrunner for smart charging EVs, using them to store peak solar and wind power production. Already 325 municipalities, including Amsterdam, Rotterdam, Utrecht and The Hague, have joined the Dutch Living Lab Smart Charging project, representing 80 per cent of all public charging stations. It is also supported by the Dutch government and has been joined by some The New Motion
October 18, 2016 Read time: 2 mins
By turning itself into one huge Living Lab for Smart Charging of electric vehicles, the Netherlands aims to become the international frontrunner for smart charging EVs, using them to store peak solar and wind power production. Already 325 municipalities, including Amsterdam, Rotterdam, Utrecht and The Hague, have joined the Dutch Living Lab Smart Charging project, representing 80 per cent of all public charging stations. It is also supported by the Dutch government and has been joined by some The New Motion and EV-Box EV charging companies.

The Living Lab Smart Charging is an open platform where small and large companies, universities, local and regional governments and grid operators cooperate on a three step program.

Step 1 is to make as many charging stations as possible ready for Smart Charging. An upgrade operation is now taking place across the country to ensure existing charging stations will be technically able to facilitate smart charging. All new stations are already smart charging ready.

Step 2 uses those stations for smart charging research and testing, such as the app by Jedlix which allows users to earn money by using technology to charge a car in the middle of the night when the wind is still producing power but there is little demand for the power. In Utrecht, Renault is testing 'vehicle to grid' charging, using an electric car with solar panels as storage to put power back into the grid when the sun goes down.

Step 3 puts all the innovation, tests and research findings into international standards, with the ultimate goal of all electric cars driving on solar and wind power.

Related Content

  • Interview: Jarrett Walker, author of Human Transit
    May 2, 2018
    Elon Musk has called him a ‘sanctimonious idiot’ but public transit expert Jarrett Walker tells Andrew Stone that more data and smarter cars aren't the answer to mass mobility...
  • Hydrogen: transportation's silver bullet?
    June 22, 2021
    As the quest for carbon-neutrality becomes a key political and economic driver, everyone is on the lookout for new sources of energy - so perhaps hydrogen’s time has come
  • Urban utility
    July 24, 2012
    Steve Lane, Commercial Director at Triteq, talks about the successful deployment of ZigBee in Barcelona where a low-cost wireless metropolitan network for location and citizen services was established. The project, he says, demonstrates ZigBee's effectiveness as an urban communications system solution ZigBee is based on the IEEE radio frequency standard 802.15.4 - 2006 for Wireless Personal Area Networks (WPAN), which provides a license-free radio frequency for a flexible, robust private wireless network. Z
  • Considering accessibility costs little and pays dividends for all travellers
    August 8, 2017
    Catering for those with disabilities can be cost-effective and improve services for all travellers, as David Crawford discovers. Clearer understanding of the economic value of accessible transport is essential if we are to speed up the current slow deployment levels, according to the Paris-based International Transport Forum (ITF), which staged a 2016 round table on the ‘Benefits and Costs of Inclusion in Transport’. It wants to see greater availability of data on levels of actual and unmet demand for acces