Skip to main content

Dutch autonomous vehicle project to develop platooning

The i-CAVE (integrated Cooperative Automated Vehicles) research program, led by Prof. Dr H. Nijmeijer of the Technical University of Eindhoven and funded through a recently awarded grant of US$4.2 million, aims to develop vehicles that can run both autonomously on dedicated roads or cooperatively on public roads. i-CAVE focuses on all important aspects involved in the development of such dual mode systems. Other participants include Delft University of Technology and University of Twente, 2getthere, DAF
December 1, 2015 Read time: 2 mins
The i-CAVE (integrated Cooperative Automated Vehicles) research program, led by Prof. Dr H. Nijmeijer of the Technical University of Eindhoven and funded through a recently awarded grant of US$4.2 million, aims to develop vehicles that can run both autonomously on dedicated roads or cooperatively on public roads. i-CAVE focuses on all important aspects involved in the development of such dual mode systems.

Other participants include Delft University of Technology and University of Twente,  8172 2getthere, DAF, 278 Ford, Segula, 1692 TomTom, Mapscape, 4474 V-Tron, 818 Technolution, Almende, 481 ANWB, ECT, Grontmij, 62 IBM, iCELL, 5460 NXP, SIG, 7087 TNO, Witteveen + Bos, Automotive, the municipalities of Eindhoven and Helmond and the Ministry of Infrastructure and Environment.

It is expected that autonomous vehicles can offer great benefits in the future, but it will take many years before they will be integrated in normal traffic situations. Various governments are participating in this program believing dual mode systems could be the solution for traffic problems, particularly in urban settings.

Within the cooperative vehicle control part of the program, 2getthere will work on the development of platooning - vehicles driving as a virtual train by accelerating and decelerating simultaneously and being able to enter and leave the platoon.

Sjoerd van der Zwaan, CTO of 2getthere, says, “Platooning is difficult to develop. It has been subject of research for years, but an affordable and practical solution is not available yet. And that is the aim of our work within this research project."

Van der Zwaan is enthusiastic with the funds awarded: "The outcome of this research will contribute to our own technology roadmap. Our specific interest in platooning is that it will enable us to improve performance and capacity (in terms of maximum number of passengers per hour per direction). The results of this project will give us insight into the control algorithms to achieve secure and robust implementation of platooning, as well as insight into the sensors and technology needed."

For more information on companies in this article

Related Content

  • Motorcycle manufacturers partner on C-ITS
    October 9, 2015
    BMW Motorrad, Honda Motor Company and Yamaha Motor Company have joined forces to enhance Cooperative-Intelligent Transportation Systems (C-ITS) applications in powered two-wheelers (PTWs) and are working together to establish a consortium named Connected Motorcycle Consortium. According to the Memorandum of Understanding (MoU), which was signed by all European Association of Motorcycle Manufacturers (ACEM) manufacturing members in 2014, C-ITS features will be introduced from 2020 onwards. In order to acc
  • Siemens demonstrates CV technology in Tampa
    December 1, 2016
    Siemens and NXP Semiconductors recently hosted live connected vehicle (CV) demonstrations in downtown Tampa in conjunction with the Florida Autonomous Vehicle Summit. Participants were driven around the half-mile course to experience how connected vehicle and vehicle-to-infrastructure (V2I) technologies work in a real-world setting. The technologies demonstrated reflect some of the systems that Tampa will feature as part of the upcoming Tampa-Hillsborough Expressway Authority’s (THEA) and US Department
  • Parking provision dictates commuters’ modal choice
    March 16, 2016
    Researchers from two American Universities have found the provision of parking spaces can encourage automobile use and increase traffic congestion. It is well understood that increased automobile use is linked to congestion, environmental degradation and negative health and safety impacts. Trials of smart parking technology has shown a reduction in circulating traffic (looking for parking) can ease congestion and that the cost of parking can influence commuters’ modal choice. Now, researchers at the univers
  • Global navigation reference point to test zero emission driverless vehicles
    December 4, 2014
    A successful consortium led by the UK’s Transport research Laboratory (TRL) has been selected by Innovate UK to deliver the GATEway project (Greenwich Automated Transport Environment), one of three projects awarded to test driverless vehicles in UK urban locations. The US$12.5 million project will see three trials of different types of zero emission automated vehicles within an innovative, technology-agnostic testing environment set in the Royal Borough of Greenwich. The ‘prime meridian’ was establi