Skip to main content

Dutch autonomous vehicle project to develop platooning

The i-CAVE (integrated Cooperative Automated Vehicles) research program, led by Prof. Dr H. Nijmeijer of the Technical University of Eindhoven and funded through a recently awarded grant of US$4.2 million, aims to develop vehicles that can run both autonomously on dedicated roads or cooperatively on public roads. i-CAVE focuses on all important aspects involved in the development of such dual mode systems. Other participants include Delft University of Technology and University of Twente, 2getthere, DAF
December 1, 2015 Read time: 2 mins
The i-CAVE (integrated Cooperative Automated Vehicles) research program, led by Prof. Dr H. Nijmeijer of the Technical University of Eindhoven and funded through a recently awarded grant of US$4.2 million, aims to develop vehicles that can run both autonomously on dedicated roads or cooperatively on public roads. i-CAVE focuses on all important aspects involved in the development of such dual mode systems.

Other participants include Delft University of Technology and University of Twente,  8172 2getthere, DAF, 278 Ford, Segula, 1692 TomTom, Mapscape, 4474 V-Tron, 818 Technolution, Almende, 481 ANWB, ECT, Grontmij, 62 IBM, iCELL, 5460 NXP, SIG, 7087 TNO, Witteveen + Bos, Automotive, the municipalities of Eindhoven and Helmond and the Ministry of Infrastructure and Environment.

It is expected that autonomous vehicles can offer great benefits in the future, but it will take many years before they will be integrated in normal traffic situations. Various governments are participating in this program believing dual mode systems could be the solution for traffic problems, particularly in urban settings.

Within the cooperative vehicle control part of the program, 2getthere will work on the development of platooning - vehicles driving as a virtual train by accelerating and decelerating simultaneously and being able to enter and leave the platoon.

Sjoerd van der Zwaan, CTO of 2getthere, says, “Platooning is difficult to develop. It has been subject of research for years, but an affordable and practical solution is not available yet. And that is the aim of our work within this research project."

Van der Zwaan is enthusiastic with the funds awarded: "The outcome of this research will contribute to our own technology roadmap. Our specific interest in platooning is that it will enable us to improve performance and capacity (in terms of maximum number of passengers per hour per direction). The results of this project will give us insight into the control algorithms to achieve secure and robust implementation of platooning, as well as insight into the sensors and technology needed."

For more information on companies in this article

Related Content

  • Men are more stressed than women when stuck in traffic
    April 23, 2012
    According to new research from TomTom, men's stress levels soar a staggering seven times higher than a woman's when stuck in heavy traffic. Psychologists tested volunteers for the rise in stress chemicals - Immunoglobulin A (IgA - an immune system marker) and alpha-amylase (a stress marker) - in their saliva when caught up in a traffic jam. The levels for women in the study increased by 8.7 per cent while stuck behind the wheel - but for men it shot up by a worrying 60 per cent in the same gridlock scenario
  • IEEE survey reveals driverless cars are the future
    July 15, 2014
    IEEE has released the findings of a survey that revealed expert opinions about the future of driverless cars, from challenges to mass adoption, essential autonomous technologies, features in the car of the future, and geographic adoption. More than 200 researchers, academicians, practitioners, university students, society members and government agencies in the field of autonomous vehicles, participated in the survey. When survey respondents were asked to assign a ranking to six possible roadblocks to th
  • Continental developing road departure protection systems
    June 25, 2015
    International automotive supplier Continental is working on new road departure protection systems that aim to eliminate unintended road departures, which currently are not completely covered by today’s lateral guidance advanced driver assistance systems (ADAS), preventing fatal accidents from occurring on highways and rural roads. According to the US Department of Transportation Federal Highway Administration, approximately 55 per cent of traffic fatalities in the US involve a vehicle crossing the roadwa
  • Capri dusts off virtual C/AV findings
    November 3, 2020
    Web-based museum includes unreleased autonomous vehicle trial footage and simulations