Skip to main content

Dutch autonomous vehicle project to develop platooning

The i-CAVE (integrated Cooperative Automated Vehicles) research program, led by Prof. Dr H. Nijmeijer of the Technical University of Eindhoven and funded through a recently awarded grant of US$4.2 million, aims to develop vehicles that can run both autonomously on dedicated roads or cooperatively on public roads. i-CAVE focuses on all important aspects involved in the development of such dual mode systems. Other participants include Delft University of Technology and University of Twente, 2getthere, DAF
December 1, 2015 Read time: 2 mins
The i-CAVE (integrated Cooperative Automated Vehicles) research program, led by Prof. Dr H. Nijmeijer of the Technical University of Eindhoven and funded through a recently awarded grant of US$4.2 million, aims to develop vehicles that can run both autonomously on dedicated roads or cooperatively on public roads. i-CAVE focuses on all important aspects involved in the development of such dual mode systems.

Other participants include Delft University of Technology and University of Twente,  8172 2getthere, DAF, 278 Ford, Segula, 1692 TomTom, Mapscape, 4474 V-Tron, 818 Technolution, Almende, 481 ANWB, ECT, Grontmij, 62 IBM, iCELL, 5460 NXP, SIG, 7087 TNO, Witteveen + Bos, Automotive, the municipalities of Eindhoven and Helmond and the Ministry of Infrastructure and Environment.

It is expected that autonomous vehicles can offer great benefits in the future, but it will take many years before they will be integrated in normal traffic situations. Various governments are participating in this program believing dual mode systems could be the solution for traffic problems, particularly in urban settings.

Within the cooperative vehicle control part of the program, 2getthere will work on the development of platooning - vehicles driving as a virtual train by accelerating and decelerating simultaneously and being able to enter and leave the platoon.

Sjoerd van der Zwaan, CTO of 2getthere, says, “Platooning is difficult to develop. It has been subject of research for years, but an affordable and practical solution is not available yet. And that is the aim of our work within this research project."

Van der Zwaan is enthusiastic with the funds awarded: "The outcome of this research will contribute to our own technology roadmap. Our specific interest in platooning is that it will enable us to improve performance and capacity (in terms of maximum number of passengers per hour per direction). The results of this project will give us insight into the control algorithms to achieve secure and robust implementation of platooning, as well as insight into the sensors and technology needed."

Related Content

  • Student essay award winners honored at ITS America in Pittsburgh
    June 3, 2015
    The 2015 student essay winners were honored Tuesday morning during the ITS America Business Meeting. Chris Fitzpatrick from the University of Missouri wrote the winning essay about the potential of platooning autonomous commercial trucks with a single driver, saving fuel, improving safety and increasing lane capacity. Fitzpatrick’s winning essay ‘Enhancing Commercial Vehicle Safety and Emissions Reduction by the use of Vehicle-to-Vehicle Communication in Tractor-Trailer Platoons’ argues that the technolo
  • Smartphone solution for parking performance
    March 31, 2017
    Automated parking offers optimised space utilisation and fewer damage complaints as David Crawford discovers. As cars become smarter, technology designed to make parking them more straightforward is developing in parallel. In turn, it is becoming clear that the places where vehicles spend much of their time will need to respond – more comprehensively than by supporting established aids such as smartphone-based parking location and reservation, or payment for time used.
  • Smartphone solution for parking performance
    March 31, 2017
    Automated parking offers optimised space utilisation and fewer damage complaints as David Crawford discovers. As cars become smarter, technology designed to make parking them more straightforward is developing in parallel. In turn, it is becoming clear that the places where vehicles spend much of their time will need to respond – more comprehensively than by supporting established aids such as smartphone-based parking location and reservation, or payment for time used.
  • Siemens to equip StreetScooter EV with innovative electronics and software
    July 30, 2014
    Siemens' central research department and electric vehicle manufacturer StreetScooter are to equip an electric car with an innovative electronic and software architecture as part of the Robust and Reliant Automotive Computing Environment for Future eCars (RACE) project. For the first time ever, the architecture will make it possible to retrofit functions such as electrical brakes and systems such as lane-keeping assistants using a plug-and-play process like on home PCs. The two companies plan to incorpora