Skip to main content

Driverless-vehicle options now include scooters

Researchers have developed an autonomous mobility scooter which could, in principle, use a scooter to get down the hall and through the lobby of an apartment building, take a golf cart across the building’s parking lot, and pick up an autonomous car on the public roads.
November 9, 2016 Read time: 2 mins

Researchers have developed an autonomous mobility scooter which could, in principle, use a scooter to get down the hall and through the lobby of an apartment building, take a golf cart across the building’s parking lot, and pick up an autonomous car on the public roads.

Developed by researchers from MIT’s Computer Science and Artificial Intelligence Laboratory (CSAIL), the National University of Singapore and the Singapore-MIT Alliance for Research and Technology (SMART), the system includes several layers of software: low-level control algorithms that enable a vehicle to respond immediately to changes in its environment, such as a pedestrian darting across its path. It also includes route-planning algorithms; localisation algorithms that the vehicle uses to determine its location on a map; map-building algorithms that it uses to construct the map in the first place; a scheduling algorithm that allocates fleet resources; and an online booking system that allows users to schedule rides.

The researchers had previously used the same sensor configuration and software in trials of autonomous cars and golf carts, so the new trial completes the demonstration of a comprehensive autonomous mobility system.

Using the same control algorithms for all types of vehicles, scooters, golf carts, and city cars, has several advantages. One is that it becomes much more practical to perform reliable analyses of the system’s overall performance.

“If you have a uniform system where all the algorithms are the same, the complexity is much lower than if you have a heterogeneous system where each vehicle does something different,” says Daniela Rus, of the Electrical Engineering and Computer Science at MIT and one of the project’s leaders. “That’s useful for verifying that this multilayer complexity is correct.”

Software uniformity also means that the scheduling algorithm has more flexibility in its allocation of system resources.

“I can see its usefulness in large indoor shopping malls and amusement parks to take [mobility-impaired] people from one spot to another,” says Dan Ding, an associate professor of rehabilitation science and technology at the University of Pittsburgh, about the system.

The researchers described the design of the scooter system and the results of the trial in a paper they presented recently at the IEEE International Conference on Intelligent Transportation Systems in Rio de Janeiro, Brazil.

Related Content

  • Navigation mapping focuses on more detail, greater accuracy
    March 16, 2012
    Navteq’s business strategy is focusing on more more detail, greater accuracy and added value. Location data provider Navteq has done much to enhance its service offer in recent months, across consumer, commercial and government markets worldwide, and the company reports more to come. Interior destination maps, the most recent addition to Navteq’s pedestrian navigation portfolio, are now being considered for complex transport interchanges to give guidance to transferring passengers, particularly those with m
  • Include ITS in policy decisions from the start, not as an afterthought
    February 1, 2012
    DG TREN's Fotis Karamitsos, on why the European Commission's new ITS Action Plan is looking to the past for future direction. The European Commission's (EC's) new Action Plan for the Deployment of Intelligent Transport Systems in Europe, which was announced as 2008 drew to a close, intends that transport and travel become 'cleaner; more efficient, including energy efficient; and safer and more secure'. At first sight, that wording might be interpreted as marking a significant policy shift within Europe, wit
  • Opinion: With e-scooters sharing is caring
    April 25, 2022
    Micromobility use is expanding: Voi’s Matthew Pencharz explains why lawmakers need to catch up with the growth of e-scooters in particular and the implications for safety
  • University of Michigan’s M City to test autonomous driving
    March 27, 2015
    The University of Michigan is creating the Mobility Transformation Center (MTC), in partnership with government and leading tech companies, as a means to test and develop the infrastructure and in-vehicle components to make autonomous vehicles a reality. M City, the nickname for the MTC, is a mock city that allows developers to test a fully autonomous driving experience in a real-world environment. With completion scheduled for July, the 32-acre facility on U of M’s North Campus will include buildings,