Skip to main content

Driverless-vehicle options now include scooters

Researchers have developed an autonomous mobility scooter which could, in principle, use a scooter to get down the hall and through the lobby of an apartment building, take a golf cart across the building’s parking lot, and pick up an autonomous car on the public roads.
November 9, 2016 Read time: 2 mins

Researchers have developed an autonomous mobility scooter which could, in principle, use a scooter to get down the hall and through the lobby of an apartment building, take a golf cart across the building’s parking lot, and pick up an autonomous car on the public roads.

Developed by researchers from MIT’s Computer Science and Artificial Intelligence Laboratory (CSAIL), the National University of Singapore and the Singapore-MIT Alliance for Research and Technology (SMART), the system includes several layers of software: low-level control algorithms that enable a vehicle to respond immediately to changes in its environment, such as a pedestrian darting across its path. It also includes route-planning algorithms; localisation algorithms that the vehicle uses to determine its location on a map; map-building algorithms that it uses to construct the map in the first place; a scheduling algorithm that allocates fleet resources; and an online booking system that allows users to schedule rides.

The researchers had previously used the same sensor configuration and software in trials of autonomous cars and golf carts, so the new trial completes the demonstration of a comprehensive autonomous mobility system.

Using the same control algorithms for all types of vehicles, scooters, golf carts, and city cars, has several advantages. One is that it becomes much more practical to perform reliable analyses of the system’s overall performance.

“If you have a uniform system where all the algorithms are the same, the complexity is much lower than if you have a heterogeneous system where each vehicle does something different,” says Daniela Rus, of the Electrical Engineering and Computer Science at MIT and one of the project’s leaders. “That’s useful for verifying that this multilayer complexity is correct.”

Software uniformity also means that the scheduling algorithm has more flexibility in its allocation of system resources.

“I can see its usefulness in large indoor shopping malls and amusement parks to take [mobility-impaired] people from one spot to another,” says Dan Ding, an associate professor of rehabilitation science and technology at the University of Pittsburgh, about the system.

The researchers described the design of the scooter system and the results of the trial in a paper they presented recently at the IEEE International Conference on Intelligent Transportation Systems in Rio de Janeiro, Brazil.

Related Content

  • Simulating the effects of optimal mobility
    May 30, 2024
    Simulation-based optimisation is the foundation for real-time predictive analytics when it comes to optimal traffic signal programming, explain Sunny Chakravarty of Econolite and Lorenzo Meschini of PTV Group
  • E-scooter sharing services to launch in Singapore
    August 30, 2017
    Although Singapore has a very extensive public transport network, walking the last few hundred metres through the heat and humidity can be very uncomfortable. Three local companies believe that shared e-scooter services will provide the answer, reports the Straits Times. Telepod and Neuron Mobility launched three months ago, while PopScoot is planning to roll out its e-scooters at almost 30 locations island-wide in September. Telepod has about 20 e-scooters at seven locations and Neuron Mobility, which rece
  • Don’t look at the jigsaw pieces – see the whole puzzle, says CCTA
    February 19, 2024
    There are three main barriers to taking transport ideas from the pilot stage to real-life usage: incompatible technology, local control and limited funding. Tim Haile of California’s Contra Costa Transportation Authority has some thoughts on how to overcome them
  • Mcity offers cloud C/AV solution to ACM
    February 1, 2021
    OS has been integrated at research group's smart mobility test centre in Michigan