Skip to main content

Driverless-vehicle options now include scooters

Researchers have developed an autonomous mobility scooter which could, in principle, use a scooter to get down the hall and through the lobby of an apartment building, take a golf cart across the building’s parking lot, and pick up an autonomous car on the public roads.
November 9, 2016 Read time: 2 mins

Researchers have developed an autonomous mobility scooter which could, in principle, use a scooter to get down the hall and through the lobby of an apartment building, take a golf cart across the building’s parking lot, and pick up an autonomous car on the public roads.

Developed by researchers from MIT’s Computer Science and Artificial Intelligence Laboratory (CSAIL), the National University of Singapore and the Singapore-MIT Alliance for Research and Technology (SMART), the system includes several layers of software: low-level control algorithms that enable a vehicle to respond immediately to changes in its environment, such as a pedestrian darting across its path. It also includes route-planning algorithms; localisation algorithms that the vehicle uses to determine its location on a map; map-building algorithms that it uses to construct the map in the first place; a scheduling algorithm that allocates fleet resources; and an online booking system that allows users to schedule rides.

The researchers had previously used the same sensor configuration and software in trials of autonomous cars and golf carts, so the new trial completes the demonstration of a comprehensive autonomous mobility system.

Using the same control algorithms for all types of vehicles, scooters, golf carts, and city cars, has several advantages. One is that it becomes much more practical to perform reliable analyses of the system’s overall performance.

“If you have a uniform system where all the algorithms are the same, the complexity is much lower than if you have a heterogeneous system where each vehicle does something different,” says Daniela Rus, of the Electrical Engineering and Computer Science at MIT and one of the project’s leaders. “That’s useful for verifying that this multilayer complexity is correct.”

Software uniformity also means that the scheduling algorithm has more flexibility in its allocation of system resources.

“I can see its usefulness in large indoor shopping malls and amusement parks to take [mobility-impaired] people from one spot to another,” says Dan Ding, an associate professor of rehabilitation science and technology at the University of Pittsburgh, about the system.

The researchers described the design of the scooter system and the results of the trial in a paper they presented recently at the IEEE International Conference on Intelligent Transportation Systems in Rio de Janeiro, Brazil.

Related Content

  • PTV sets its sights on Smart City solutions
    February 9, 2017
    Making a city smarter not only relies on understand technological opportunities but also human decision-making, as Miller Crockart explains. Cities are about people – a fact that can easily be forgotten when experts talk about roads, healthcare and education as though they are abstract and unconnected monoliths rather than things people use. Understanding how and why people use services is vital for making decisions on how they can be optimised for maximum efficiency across inter-connected networks that for
  • Vehicle identification systems aid dynamic bus operations
    April 24, 2013
    David Crawford looks at a global trend towards more efficiency in less space As buses gain increased profile in the public transport mix needed for modal shift, attention is turning towards improving terminal layouts for more efficient handling of services and passengers. Locations, too, tend to be in central areas of cities, where sites are restricted and land values high. Enter the dynamic bus station, which uses modern vehicle identification systems to optimise space use and streamline service operation
  • Weathering the elements: how weather affects the network
    July 29, 2013
    Weather-related problems can render cost-cutting counter productive, according to CommScope’s Philip Sorrells. When severe weather conditions make headlines every winter, motorists and travellers seem willing to accept the impact on the trains and roads and yet take for granted that the communications networks will continue uninterrupted. They often appear far more upset that the information system does not give them an update on road conditions, train services or bus arrival times than they are about the a
  • Iteris unveils AI detection solution
    November 23, 2021
    Vantage Apex combines combines FHD video, radar and AI in hybrid traffic solution