Skip to main content

Driverless-vehicle options now include scooters

Researchers have developed an autonomous mobility scooter which could, in principle, use a scooter to get down the hall and through the lobby of an apartment building, take a golf cart across the building’s parking lot, and pick up an autonomous car on the public roads.
November 9, 2016 Read time: 2 mins

Researchers have developed an autonomous mobility scooter which could, in principle, use a scooter to get down the hall and through the lobby of an apartment building, take a golf cart across the building’s parking lot, and pick up an autonomous car on the public roads.

Developed by researchers from MIT’s Computer Science and Artificial Intelligence Laboratory (CSAIL), the National University of Singapore and the Singapore-MIT Alliance for Research and Technology (SMART), the system includes several layers of software: low-level control algorithms that enable a vehicle to respond immediately to changes in its environment, such as a pedestrian darting across its path. It also includes route-planning algorithms; localisation algorithms that the vehicle uses to determine its location on a map; map-building algorithms that it uses to construct the map in the first place; a scheduling algorithm that allocates fleet resources; and an online booking system that allows users to schedule rides.

The researchers had previously used the same sensor configuration and software in trials of autonomous cars and golf carts, so the new trial completes the demonstration of a comprehensive autonomous mobility system.

Using the same control algorithms for all types of vehicles, scooters, golf carts, and city cars, has several advantages. One is that it becomes much more practical to perform reliable analyses of the system’s overall performance.

“If you have a uniform system where all the algorithms are the same, the complexity is much lower than if you have a heterogeneous system where each vehicle does something different,” says Daniela Rus, of the Electrical Engineering and Computer Science at MIT and one of the project’s leaders. “That’s useful for verifying that this multilayer complexity is correct.”

Software uniformity also means that the scheduling algorithm has more flexibility in its allocation of system resources.

“I can see its usefulness in large indoor shopping malls and amusement parks to take [mobility-impaired] people from one spot to another,” says Dan Ding, an associate professor of rehabilitation science and technology at the University of Pittsburgh, about the system.

The researchers described the design of the scooter system and the results of the trial in a paper they presented recently at the IEEE International Conference on Intelligent Transportation Systems in Rio de Janeiro, Brazil.

Related Content

  • August 13, 2015
    Jonathan Raper from TransportAPI is surfing the open data tidal wave
    Jonathan Raper, managing director of the TransportAPI talks to Colin Sowman about the benefits open data can bring to the public transport sector. That the digital revolution would change the world, including transport, was never in doubt but the question has always been: how? Now, with the ‘Millennium Bug’ relegated to a question on quiz shows, the potential and challenges of digital technology are starting to take shape - and Jonathan Raper is in the vanguard. Raper is managing director of the open data t
  • August 7, 2018
    Motown morphs into Mobility City
    Detroit was once a byword for urban decay – but ITS America recently held its annual meeting there. This gave David Arminas a chance to assess how fast Motor City is moving down the road to recovery. Motor City, as Detroit is still called, was on its financial knees only five short years ago. The future looked bleak as the city and greater urban area bled jobs and population. It was on 18 July 2013 that Motown, as Detroit is also known, filed for Chapter 9 bankruptcy protection, the
  • June 5, 2018
    MaaS must be seamless and invisible - or forget it
    MaaS experts from around the world converged on ITS International’s MaaS Market Atlanta conference to talk about how MaaS can be implemented in the US. Andrew Bardin Williams had a front row seat. Transportation experts from around the world gathered in the US earlier this month to discuss the future of Mobility as a Service (MaaS) and how it could be deployed in the US market. While most attendees at ITS International’s MaaS Market Atlanta conference were familiar with the MaaS concept, the US’s highly
  • February 1, 2012
    Cooperative road infrastructures - progress and the future
    Robert Bertini, deputy administrator of the USDOT's Research and Innovative Technology Administration, discusses the research and deployment paths of cooperative road infrastructures. High-level analysis by the US's National Highway Traffic Safety Administration (NHTSA) of the potential of Vehicle-to-Infrastructure/Infrastructure-to-Vehicle (V2I/I2V) and Vehicle-to-Vehicle (V2V) technologies indicates that V2V could in exclusivity address a large proportion of crashes involving unimpaired drivers. In fact,