Skip to main content

Driverless-vehicle options now include scooters

Researchers have developed an autonomous mobility scooter which could, in principle, use a scooter to get down the hall and through the lobby of an apartment building, take a golf cart across the building’s parking lot, and pick up an autonomous car on the public roads.
November 9, 2016 Read time: 2 mins

Researchers have developed an autonomous mobility scooter which could, in principle, use a scooter to get down the hall and through the lobby of an apartment building, take a golf cart across the building’s parking lot, and pick up an autonomous car on the public roads.

Developed by researchers from MIT’s Computer Science and Artificial Intelligence Laboratory (CSAIL), the National University of Singapore and the Singapore-MIT Alliance for Research and Technology (SMART), the system includes several layers of software: low-level control algorithms that enable a vehicle to respond immediately to changes in its environment, such as a pedestrian darting across its path. It also includes route-planning algorithms; localisation algorithms that the vehicle uses to determine its location on a map; map-building algorithms that it uses to construct the map in the first place; a scheduling algorithm that allocates fleet resources; and an online booking system that allows users to schedule rides.

The researchers had previously used the same sensor configuration and software in trials of autonomous cars and golf carts, so the new trial completes the demonstration of a comprehensive autonomous mobility system.

Using the same control algorithms for all types of vehicles, scooters, golf carts, and city cars, has several advantages. One is that it becomes much more practical to perform reliable analyses of the system’s overall performance.

“If you have a uniform system where all the algorithms are the same, the complexity is much lower than if you have a heterogeneous system where each vehicle does something different,” says Daniela Rus, of the Electrical Engineering and Computer Science at MIT and one of the project’s leaders. “That’s useful for verifying that this multilayer complexity is correct.”

Software uniformity also means that the scheduling algorithm has more flexibility in its allocation of system resources.

“I can see its usefulness in large indoor shopping malls and amusement parks to take [mobility-impaired] people from one spot to another,” says Dan Ding, an associate professor of rehabilitation science and technology at the University of Pittsburgh, about the system.

The researchers described the design of the scooter system and the results of the trial in a paper they presented recently at the IEEE International Conference on Intelligent Transportation Systems in Rio de Janeiro, Brazil.

Related Content

  • Russia 2018 World Cup: ITS can win it
    June 5, 2018
    Teams and supporters will cover vast distances in Russia for the 2018 FIFA World Cup. Stephane Clauss from Sony Europe’s Image Sensing Solutions division examines how the latest camera technologies can be deployed to help things run smoothly over the next month or so... For one month, from June 14, Russia is hosting the 2018 FIFA World Cup. This is the largest country in the world and the distances between venues will be larger than at almost any other World Cup - bar the finals in the US and Brazil.
  • AB Dynamics platform adds cyclists and pedestrians to ADAS and AV testing
    March 27, 2018
    UK-based AB Dynamics (ABD) has released its LaunchPad platform with the intention of offering choreographed control of all mobile features involved in advanced driver assistance systems (ADAS) and autonomous vehicle testing. The solution, according to Jeremy Ash, the company’s commercial manager, will help create complex scenarios that potentially involve multiple pedestrians, cyclists and cars that are all synchronised and coordinated with the test vehicle. LaunchPad’s power controller runs on the comp
  • Development banks pledge US$175 billion for clean transport
    June 21, 2012
    Eight of the world’s largest multilateral development banks (MDBs) banks yesterday pledged to invest US$175 billion over the next 10 years to support sustainable transport in developing countries. The pledge was made at the UN Sustainable Development Conference in Rio de Janeiro (Rio+20) by the African Development Bank, Asian Development Bank, CAF- Development Bank of Latin America, European Bank for Reconstruction and Development, European Investment Bank, Inter-American Development Bank, Islamic Developme
  • Modelling could reduce traffic mayhem
    May 6, 2016
    A mathematical model that could significantly reduce traffic congestion by combining data from existing infrastructure, remote sensors, mobile devices and their communication systems has been developed by a research team from Australia’s Swinburne University of Technology. Swinburne‘s Congestion Breaker project utilises intelligent transport systems (ITS), a field of research that combines information and data from a range of sources for effective traffic control.