Skip to main content

Driver assistance with stereo vision sensing system

A new stereo vision sensing (SVS) system developed by automotive safety systems supplier Autoliv will, says the company, help vehicle manufacturers meet the new test criteria that EuroNCAP recently announced to promote autonomous emergency braking, intelligent speed assist, lane departure assists and pedestrian protection. The system has a field of view of 50 degrees and can recognise objects within 120 metres. To provide the best view, the stereo vision cameras are mounted high on the front windshield behi
May 14, 2013 Read time: 2 mins
A new stereo vision sensing (SVS) system developed by automotive safety systems supplier 4171 Autoliv will, says the company, help vehicle manufacturers meet the new test criteria that EuroNCAP recently announced to promote autonomous emergency braking, intelligent speed assist, lane departure assists and pedestrian protection.

The system has a field of view of 50 degrees and can recognise objects within 120 metres. To provide the best view, the stereo vision cameras are mounted high on the front windshield behind the rear view mirror.

Autoliv’s new system will provide autonomous emergency braking, intelligent speed assist, road/lane departure warning and pedestrian protection, which is proposed to be included in EurNCAP’s star rating of new vehicles from 2017.   The system can also provide adaptive cruise control, queue assist, light source recognition to automatically control the headlights to avoid blinding oncoming traffic and road surface monitoring to automatically adjust the suspension ahead of uneven road surfaces.

The SVS also provides four additional applications. By adding another camera in tandem with the first, the system can provide a three dimensional view of the area in front of a vehicle, enabling the system to calculate the distance to different objects in front of the vehicle and determine the shape and the size of them. The system will calculate the direction and speed of objects moving closer to the vehicle and is able to predict if, for example, a pedestrian is at risk and warn the driver or brake the car.

For more information on companies in this article

Related Content

  • Global automotive park assist systems market 2014-2018
    May 2, 2014
    Research and Markets’ latest report, Global Automotive Park Assist Systems Market 2014-2018, forecasts the global automotive park assist systems market to grow at a CAGR of 6.53 per cent over the period 2013-2018. One of the key factors contributing to this market growth is the increasing demand for various advanced driver assistance systems (ADAS). The global automotive park assist systems market has also been witnessing the increasing adoption of camera-based systems. However, the recent economic slowdown
  • Developing ‘next generation’ traffic control centre technology
    July 4, 2012
    The Rijkswaterstaat and Highways Agency have joined forces to investigate what the market can do to realise an idealistic vision for traffic control centre technology. Jon Masters reports One particular seminar session of the Intertraffic show in Amsterdam in March was notably over subscribed. So heavy was the press to attend that your author, making his way over late from another appointment, could not get in and found himself craning over other heads locked outside to overhear what was being said. The
  • Sorting myth from reality in vehicle automation
    June 2, 2016
    Bob Denaro looks beyond the hype surrounding autonomous vehicles to the challenges that still need to be overcome. Automated vehicles (AVs) may be the perfect storm – in a positive way - with the automobile manufacturers, the government and consumers all embracing the emergence of a transformational new technology and product.
  • Intersection monitoring from video using 3D reconstruction
    March 9, 2016
    Researchers Yuting Yang, Camillo Taylor and Daniel Lee have developed a system to turn surveillance cameras into traffic counters. Traffic information can be collected from existing inexpensive roadside cameras but extracting it often entails manual work or costly commercial software. Against this background the Delaware Valley Regional Planning Commission (DVRPC) was looking for an efficient and user-friendly solution to extract traffic information from videos captured from road intersections.