Skip to main content

Driver assistance with stereo vision sensing system

A new stereo vision sensing (SVS) system developed by automotive safety systems supplier Autoliv will, says the company, help vehicle manufacturers meet the new test criteria that EuroNCAP recently announced to promote autonomous emergency braking, intelligent speed assist, lane departure assists and pedestrian protection. The system has a field of view of 50 degrees and can recognise objects within 120 metres. To provide the best view, the stereo vision cameras are mounted high on the front windshield behi
May 14, 2013 Read time: 2 mins
A new stereo vision sensing (SVS) system developed by automotive safety systems supplier 4171 Autoliv will, says the company, help vehicle manufacturers meet the new test criteria that EuroNCAP recently announced to promote autonomous emergency braking, intelligent speed assist, lane departure assists and pedestrian protection.

The system has a field of view of 50 degrees and can recognise objects within 120 metres. To provide the best view, the stereo vision cameras are mounted high on the front windshield behind the rear view mirror.

Autoliv’s new system will provide autonomous emergency braking, intelligent speed assist, road/lane departure warning and pedestrian protection, which is proposed to be included in EurNCAP’s star rating of new vehicles from 2017.   The system can also provide adaptive cruise control, queue assist, light source recognition to automatically control the headlights to avoid blinding oncoming traffic and road surface monitoring to automatically adjust the suspension ahead of uneven road surfaces.

The SVS also provides four additional applications. By adding another camera in tandem with the first, the system can provide a three dimensional view of the area in front of a vehicle, enabling the system to calculate the distance to different objects in front of the vehicle and determine the shape and the size of them. The system will calculate the direction and speed of objects moving closer to the vehicle and is able to predict if, for example, a pedestrian is at risk and warn the driver or brake the car.

For more information on companies in this article

Related Content

  • Automatic signal control to prevent emergency vehicle collisions?
    March 14, 2012
    Field trials under way in Arizona promise eradication of accidents between emergency vehicles at intersections – as part of a national focus on ‘intelligent signal’ infrastructure. Collisions between police cars, ambulances and fire crews as they reach intersections at the same time, with equal priority given by all signals set on red, are as serious as they sound absurd. For emergency teams and those in need of their help, the consequences are dire. The solution could come from application of connected veh
  • Global mobility study: world on the move
    November 27, 2020
    ERF reviews impact of new mobility on road infrastructure in 20 countries pre-Covid
  • Self-driving car safety perspectives
    June 2, 2015
    At yesterday’s Opening Plenary, Chris Urmson’s keynote speech dealt with the reality of driverless cars on our roads. By far and away their greatest benefit to mankind will be the potential to achieve an incredible saving of life and injury on the roads, as Urmson, director of the Google Self-Driving Car program, revealed to delegates. In response to an Associated Press article last month disclosing that self-driving cars have been involved in four accidents in the state of California, Urmson revealed th
  • Intertraffic Awards 2022: shortlist announced!
    February 4, 2022
    Winners will be revealed at the opening ceremony of Intertraffic Amsterdam in March