Skip to main content

Driver assistance with stereo vision sensing system

A new stereo vision sensing (SVS) system developed by automotive safety systems supplier Autoliv will, says the company, help vehicle manufacturers meet the new test criteria that EuroNCAP recently announced to promote autonomous emergency braking, intelligent speed assist, lane departure assists and pedestrian protection. The system has a field of view of 50 degrees and can recognise objects within 120 metres. To provide the best view, the stereo vision cameras are mounted high on the front windshield behi
May 14, 2013 Read time: 2 mins
A new stereo vision sensing (SVS) system developed by automotive safety systems supplier 4171 Autoliv will, says the company, help vehicle manufacturers meet the new test criteria that EuroNCAP recently announced to promote autonomous emergency braking, intelligent speed assist, lane departure assists and pedestrian protection.

The system has a field of view of 50 degrees and can recognise objects within 120 metres. To provide the best view, the stereo vision cameras are mounted high on the front windshield behind the rear view mirror.

Autoliv’s new system will provide autonomous emergency braking, intelligent speed assist, road/lane departure warning and pedestrian protection, which is proposed to be included in EurNCAP’s star rating of new vehicles from 2017.   The system can also provide adaptive cruise control, queue assist, light source recognition to automatically control the headlights to avoid blinding oncoming traffic and road surface monitoring to automatically adjust the suspension ahead of uneven road surfaces.

The SVS also provides four additional applications. By adding another camera in tandem with the first, the system can provide a three dimensional view of the area in front of a vehicle, enabling the system to calculate the distance to different objects in front of the vehicle and determine the shape and the size of them. The system will calculate the direction and speed of objects moving closer to the vehicle and is able to predict if, for example, a pedestrian is at risk and warn the driver or brake the car.

For more information on companies in this article

Related Content

  • Electronic tolling coming to New Zealand in 2015
    March 27, 2015
    New Zealand is to implement multi-lane free flow tolling on key routes in Tauranga later this year, with the installation of two high-tech electronic tolling gantries, each with 16 cameras, on Tauranga Eastern Link (TEL) and Route K. The cameras will capture an image of the vehicle’s front and rear registration plates using the latest optical character recognition technology. The cameras will read the registration plates and determine the size of the vehicle and whether it is a motorcycle, car, truck or
  • Denso demonstrates HMI systems expertise
    October 7, 2015
    Human machine interface (HMI) systems are being demonstrated for the first time by Denso at the 2015 ITS World Congress, as part of the company’s planned roadmap to fully automated driving. Denso has predicted full automation will be reached at some point after 2020, requiring cooperation between four main fields of technology.
  • Ford targets fully autonomous vehicle in 2021
    August 17, 2016
    Ford has announced its intention to have a high-volume, fully autonomous vehicle in commercial operation in 2021. The new vehicle will be a Society of Automotive Engineers-rated level 4-capable vehicle without a steering wheel or gas and brake pedals. It is being specifically designed for commercial mobility services, such as ride sharing and ride hailing, and will be available in high volumes. SAE level 4 is one level below full automation and is defined as ‘mode-specific performance by an automated
  • Barcelona pilot for Hayden AI detection system
    March 21, 2025
    Hayden AI is last year's winner of Spanish city's Innova Lab Mobility challenge