Skip to main content

Drive C2X tests ITS systems in Finland’s demanding weather conditions

The VTT Technical Research Centre in Finland is involved in an extensive international Drive C2X project that tests and develops intelligent transport solutions, aimed at improving safety and efficiency in road traffic and reducing the carbon footprint of motoring. The project includes large-scale testing of inter-vehicle communication and communication between vehicles and the roadside infrastructure system. The tests are being carried out using cars from Mercedes-Benz, Opel and Volvo in slippery and deman
December 17, 2013 Read time: 3 mins
The 814 VTT Technical Research Centre in Finland is involved in an extensive international Drive C2X project that tests and develops intelligent transport solutions, aimed at improving safety and efficiency in road traffic and reducing the carbon footprint of motoring. The project includes large-scale testing of inter-vehicle communication and communication between vehicles and the roadside infrastructure system. The tests are being carried out using cars from 1685 Mercedes-Benz, 4233 Opel and 609 Volvo in slippery and demanding weather conditions in the city of Tampere, Finland.

“The purpose of the project is to use large-scale field trials to examine the effects of systems based on inter-vehicle communication and communication between vehicles and the roadside infrastructure system. Testing in Tampere focuses on demanding weather conditions and warning of slippery road surfaces,” explains Harri Koskinen, senior scientist at VTT. “VTT has competence and experience in the analysis of the impacts of intelligent transport systems."

First-stage field trials were completed at the Tampere test site in May 2013. “We performed the First tests successfully and within the planned schedule. We are now implementing the second stage where automobile manufacturers are already involved with their own cars. Our collaboration with Mercedes-Benz, Opel and Volvo manufacturers has become closer. It seems leading car manufacturers have confidence in VTT’s competence,” says Koskinen. “We arrange tests for them in demanding and slippery conditions.”

The second stage, in November-December 2013, tested a system where the driver receives information on slippery road surfaces and traffic signs over a 22-kilometre stretch of road.

“The measuring points along the road transmit warnings of slippery stretches and traffic signs – such as right of way, warning triangles and speed limits – to the vehicle's display device, 400 to 500 metres in advance,” Koskinen says. “We have thirty drivers here, and collect a huge amount of data from their test drives for analysis.”   

In all, more than 80 drivers will have taken part in the Tampere field trials. The data collected from the tests will be analysed in spring 2014. “VTT experts have a leading role in the analysis of this data. The impact analysis process has only just begun, but preliminary results seem to indicate the tested systems having a positive impact, not least on road traffic safety,” says Koskinen. “We’ve been collaborating with automobile manufacturers for a long time, and this will continue. Russia is also an increasingly interesting market area for car manufacturers, and weather conditions there are much the same as we have in Finland."

The results of the Drive C2X project will be released in France in July 2014.

Related Content

  • March 26, 2013
    Creating safer roads with vehicle communication
    Accurate, timely information which eliminates the need to brake quickly when approaching a work zone or other road hazard could prevent crashes and save lives, according to research by the University of Minnesota. Thanks to research by the University of Minnesota, this vision is closer than ever to reality. “In the past fifty years we’ve made great strides in reducing traffic fatalities with technologies that save lives in crashes, like airbags and seat belts,” says M. Imram Hayee, electrical and computer e
  • December 12, 2018
    VTT utilises 5G network to improve road safety
    VTT’s Technical Research Centre in Finland has carried out an experiment using the 5G mobile network to help improve road safety, control self-driving cars and assist road maintenance providers. The company says 5G networks and fast data transmission solutions can collect sensor, video and radar data from vehicles. Public funding agency Business Finland subsidised the VTT's 5G-Safe project. It is part of the Challenge Finland competition, an initiative which explores the use of augmented reality an
  • December 13, 2013
    Daimler’s double take sees machine vision move in-vehicle
    Jason Barnes looks at Daimler’s Intelligent Drive programme to consider how machine vision has advanced the state of the art of vision-based in-vehicle systems. Traditionally, radar was the in-vehicle Driver Assistance System (DAS) technology of choice, particularly for applications such as adaptive cruise control and pre-crash warning generation. Although vision-based technology has made greater inroads more recently, it is not a case of ‘one sensor wins’. Radar and vision are complementary and redundancy
  • March 23, 2018
    Finland’s Corridor as a Service aims to streamline logistics
    Corridor as a Service (CaaS) operator Vediafi has signed a CaaS-Net ecosystem agreement with Dynniq at Intertraffic 2018, in Amsterdam. The service is designed with the intention of improving goods logistics through digital services to help Finland become a logistics hub for improving and expanding international commerce. The development of the CaaS ecosystem is being accelerated by the capital loan granted by Business Finland for the development of new growth drivers. A preliminary assessment is being