Skip to main content

Continental focuses on automated truck convoys

Technology company Continental is developing components and systems for the series launch of the electronic towbar, or platooning, using on an interoperable internet platform, which trucks from different manufacturers and fleet operators can use to form an electronic convoy on the freeway. Braking and sensor data are transmitted wirelessly from the lead vehicle to the following vehicles.
September 5, 2016 Read time: 2 mins

Technology company 260 Continental is developing components and systems for the series launch of the electronic towbar, or platooning, using on an interoperable internet platform, which trucks from different manufacturers and fleet operators can use to form an electronic convoy on the freeway. Braking and sensor data are transmitted wirelessly from the lead vehicle to the following vehicles.
 
Continental forecasts that it will be possible to initially reduce the distance between vehicles from 50 to15 metres at a speed of 80 km/h. Its development experts even predict that, in the long term, it will be technically possible to safely reduce this distance to only 10 metres.
 
Drivers in the convoy are supported by automated driving systems. As a first step, Continental is working on the technology for highly automated convoys comprising a lead truck being followed by one or two additional trucks using the electronic towbar.
 
According to Dr Michael Ruf, head of continental’s Commercial Vehicles and Aftermarket, platooning means that the truck, which is electronically coupled to the lead vehicle, consumes up to 15 per cent less fuel thanks to safe slipstreaming. Even the lead vehicle drives up to three percent more efficiently on account of the reduction in air turbulence, he says.
 
Continental believes that if only 50 per cent of the annual mileage of a truck, totalling 150,000 km, was driven in convoy, every coupled truck would be able to save 4,000 litres of diesel per year. One of these convoys would reduce annual fuel costs by over US$10,000 (€9,000) per year and enable the fleet operator to reduce its CO2 emissions by 24 kg per hour with a convoy of three trucks.

Related Content

  • December 2, 2016
    Finland successfully tests wood-based diesel fuel
    Finnish company UPM has tested Finnish wood-based diesel fuel both in laboratory conditions as well as in traffic and says the tests demonstrated that its renewable diesel, UPM BioVerno, works like the best diesel fuels. The laboratory tests of renewable UPM BioVerno diesel were conducted at the VTT Technical Research Centre (VTT), with field tests in Helsinki region bus traffic in collaboration with Helsinki Region Transport (HSL). The year-long bus field tests measurements were carried out by VTT and t
  • November 12, 2015
    Driver aids make inroads on improving safety
    In-vehicle anti-collision systems continue to evolve and could eliminate some incidents altogether. John Kendall rounds up the current developments. A few weeks ago, I watched a driver reverse a car from a parking bay at right angles to the road, straight into a car driving along the road. The accident happened at walking pace, no-one was hurt and both cars had body panels that regain their shape after a low speed shunt.
  • March 20, 2014
    Adaptive cruise control would suppress traffic instability
    Professor Berthold Horn of Massachusetts Institute of Technology believes a modified adaptive cruise control could mitigate phantom traffic jamsthat occur for no apparent reason. The phenomenon of the phantom traffic jam is all too common: they appear for no apparent reason and, having caused frustrating delays for all travelers, evaporate for an equally mystical reason. Phantom traffic jams usually occur on busy highways and often take the form of repeatedly stopping and then accelerating up to near the
  • August 9, 2013
    Electric cars – do zero emissions add up?
    Buying an electric car may seem to be the green option when the energy label states Zero CO2 emissions. But that’s not the whole story when you factor in the electricity required to charge the batteries, and associated CO2 emissions created in electricity generation; the green benefits then become less clear. According to Vehicle Certification Agency (VCA), the latest Renault Clio 4, dCi 90 ECO, emits 83 grams of CO2 per kilometre travelled. In comparison the Electric Nissan Leaf, requires 173 Watts of elec