Skip to main content

Continental focuses on automated truck convoys

Technology company Continental is developing components and systems for the series launch of the electronic towbar, or platooning, using on an interoperable internet platform, which trucks from different manufacturers and fleet operators can use to form an electronic convoy on the freeway. Braking and sensor data are transmitted wirelessly from the lead vehicle to the following vehicles.
September 5, 2016 Read time: 2 mins

Technology company 260 Continental is developing components and systems for the series launch of the electronic towbar, or platooning, using on an interoperable internet platform, which trucks from different manufacturers and fleet operators can use to form an electronic convoy on the freeway. Braking and sensor data are transmitted wirelessly from the lead vehicle to the following vehicles.
 
Continental forecasts that it will be possible to initially reduce the distance between vehicles from 50 to15 metres at a speed of 80 km/h. Its development experts even predict that, in the long term, it will be technically possible to safely reduce this distance to only 10 metres.
 
Drivers in the convoy are supported by automated driving systems. As a first step, Continental is working on the technology for highly automated convoys comprising a lead truck being followed by one or two additional trucks using the electronic towbar.
 
According to Dr Michael Ruf, head of continental’s Commercial Vehicles and Aftermarket, platooning means that the truck, which is electronically coupled to the lead vehicle, consumes up to 15 per cent less fuel thanks to safe slipstreaming. Even the lead vehicle drives up to three percent more efficiently on account of the reduction in air turbulence, he says.
 
Continental believes that if only 50 per cent of the annual mileage of a truck, totalling 150,000 km, was driven in convoy, every coupled truck would be able to save 4,000 litres of diesel per year. One of these convoys would reduce annual fuel costs by over US$10,000 (€9,000) per year and enable the fleet operator to reduce its CO2 emissions by 24 kg per hour with a convoy of three trucks.

For more information on companies in this article

Related Content

  • The sunshine subsidy for Colorado’s tollways
    January 10, 2014
    David Crawford reports on energy cost cutting on US highways. Just over a year after switch-on and with two global awards under its belt, the longest solar-powered toll road in the US is generating heightened interest in highway applications of alternative energy. The E-407, which loops around the eastern perimeter of the Denver metropolitan area in Colorado, won the International Bridge, Tunnel and Turnpike Association (IBTTA) President’s Overall Award for Excellence at its September 2013 Annual Meeting in
  • Johnson Controls-Saft to supply batteries for China EV platforms
    February 3, 2012
    Johnson Controls-Saft, a specialist in the development and manufacture of advanced lithium-ion batteries for hybrid and electric vehicles, will supply the complete battery system for two electric vehicle platforms, which will be launched by the Beijing Electric Vehicle Company (BEVC), a subsidiary of Beijing Automotive Industry Company (BAIC).
  • New solutions to old problems set to cut emergency response times
    April 30, 2015
    David Crawford looks at the latest developments in emergency response. Ensuring speedier reactions to transport and travel crises is becoming increasingly important. US statistics suggest that as many as 1,000 ‘saveable’ lives can be lost each year in major cities because of operational defects in their SOS operations.
  • Ride-sharing could reduce congestion, says US study
    January 6, 2017
    A new Massachusetts Institute of Technology (MIT) study suggests that using carpooling options from companies like Uber and Lyft could reduce the number of vehicles on the road by a factor of three without significantly impacting travel time. Led by Professor Daniela Rus, director of MIT’s Computer Science and Artificial Intelligence Laboratory (CSAIL), researchers developed an algorithm that found 3,000 four-passenger cars could serve 98 per cent of taxi demand in New York City, with an average wait-tim