Skip to main content

Continental and Oxford University jointly researching artificial intelligence

International technology company Continental and the Department of Engineering Science at the University of Oxford are now conducting joint research in the field of artificial intelligence in a partnership which will focus on the possible uses and development of artificial intelligence algorithms, which have the potential to further enhance future mobility applications. These deep-learning algorithms have the potential to deliver future visual object detection and human–machine dialogue.
November 11, 2016 Read time: 2 mins

International technology company 260 Continental and the Department of Engineering Science at the University of Oxford are now conducting joint research in the field of artificial intelligence in a partnership which will focus on the possible uses and development of artificial intelligence algorithms, which have the potential to further enhance future mobility applications. These deep-learning algorithms have the potential to deliver future visual object detection and human–machine dialogue.

Continental expects the partnership to yield findings on the use of artificial intelligence methods, including in the areas of automated and autonomous driving, the improvement of future vehicle access systems, accident minimisation through intelligent warning systems, and the sensitive dialogue that will take place in the future between drivers and vehicles – between humans and their machines.

The first phase of the proposed three-year partnership began in early November 2016 and includes new postdoctoral research positions at Oxford. There are plans to extend the research scope and the time frame at a later date.

For more information on companies in this article

Related Content

  • Audi Urban Intelligent Assist research programme launched
    May 21, 2012
    A new research initiative launched by Audi, its electronics research laboratory in Silicon Valley and four top US universities aims to develop technologies focused on easing the congestion, dangers and inconveniences that often confront drivers in the world's biggest cities. The new three-year Audi Urban Intelligent Assist research initiative aims to take connected car, driver assistance and infrastructure electronics to the next level of providing detailed information so motorists have a better sense of th
  • Sound synthesis makes hybrid and electric vehicles safer
    January 20, 2012
    The growing popularity of hybrids and electric vehicles gives rise to new safety issues in urban environments, as many of the aural cues associated with engine noise can be missing. The solution is to intelligently make vehicles noisier. The rise in popularity of hybrids and Electric Vehicles (EVs) is a result of environmental pressures, shifts in taxation and emerging technologies for batteries and motors. Competition among the car manufacturers means these vehicles need to be cost effective to buy and ope
  • ITS Australia welcomes USDOT move on V2V communications
    February 17, 2014
    The announcement by the United States Government announcement that it will begin taking steps to enable vehicle-to-vehicle (V2V) communication technology for light vehicles has been welcomed by ITS Australia, which said it is pivotal in taking road safety to the next level. This technology improves safety by allowing vehicles to ‘talk’ to each other and exchange basic safety data, such as speed, position and projected path, ten times per second. The US Department of Transportation (DOT) announcement inc
  • Digital Light Processing transforms travel information
    July 19, 2012
    David Crawford investigates the potential of new projection technology. Fifty years on from its invention of the microchip, US company Texas Instruments (TI) has compressed the technology into a surface area of just 4.3mm. As such, it forms the heart of a new Pico Digital Light Processing (DLP) system that is set to transform travel information delivery for millions of users on the move - by making it projectable.