Skip to main content

Car makers test next generation connected car communications technology

Audi, Deutsche Telekom, Huawei, Toyota Motor Europe and other car manufacturers are currently carrying out technical field trials on testing LTE-Vehicular (LTE-V), which is seen as a potential enabler for road safety applications and traffic control services as well as emerging automated driving use. The tests, which are being carried out on the A9 motorway in Germany, with the objective of assessing the performance of LTE-V for connected vehicle communications during its standardisation process. LTE
July 11, 2016 Read time: 2 mins
2125 Audi, 4194 Deutsche Telekom, 6787 Huawei, 1686 Toyota Motor Europe and other car manufacturers are currently carrying out technical field trials on testing LTE-Vehicular (LTE-V), which is seen as a potential enabler for road safety applications and traffic control services as well as emerging automated driving use.

The tests, which are being carried out on the A9 motorway in Germany, with the objective of assessing the performance of LTE-V for connected vehicle communications during its standardisation process.

LTE-V is an evolution variant of the fourth generation standard for mobile communications LTE (4G) and is specifically designed to meet automotive requirements for both vehicle-to-vehicle and vehicle-to-infrastructure communication. It can address multiple application types ranging from connected vehicle safety applications (e.g. collision warning, pedestrian warning, etc.) to connected vehicle smart mobility applications for increased efficiency. It is being specified within the European 3GPP project that develops telecommunications standards as part of their Release 14.

Using test cars, the technology has to prove itself under various scenarios and environmental conditions encountered in real life to evaluate its performance and feasibility for different future use cases and applications. Deutsche Telekom infrastructure has been specially equipped with LTE-V hardware from Huawei to support the trial scenarios. Audi, Toyota Motor Europe and other car manufacturers have equipped research cars with the LTE-V hardware developed by Huawei.

Based on the trial results and experience gained, the partners will provide input into the standards specifications for LTE-V. The partners are also contributing to requirements definition for later releases of the 3GPP project, which will aim to enable a wide range of emerging use cases from connected and automated driving to new mobility services in the 5G era from 2020.

Related Content

  • September 22, 2017
    DEKRA builds test area for connected driving in Malaga, Spain
    German vehicle inspection organisation DEKRA is building a connected car test area in Malaga, Spain, as part of its international testing network for connected and automated driving. The test area will open before the end of 2017and area will focus on R&D and early production testing, while the existing test ground at DEKRA in Klettwitz and the Lausitzring race track in Germany, recently acquired by DEKRA, will be set up for automotive systems, whole vehicle and infrastructure testing.
  • January 14, 2020
    Future of tolling: the priorities
    In the final part of his investigation into the future of tolling technology, Josef Czako of Moving Forward Consulting asks what industry figures see as the priorities going forward…
  • February 20, 2020
    Get connected at ITS European Congress in Lisbon
    The way connectivity is transforming how we plan and deliver mobility will be discussed in detail at this year’s ITS European Congress in Lisbon from 18-20 May.
  • July 23, 2012
    Improving the positional accuracy of GNSS road user charging
    The European GINA project is intended to address and overcome many of the institutional, technical and public acceptance hurdles currently faced by satellite-based road user charging schemes. Dave Tindall and Denis Naberezhnykh, TRL, and Laure Dezes, ERF, write. Pay-as-you-drive Road User Charging (RUC), whereby demand (or congestion) is managed by applying appropriate tariffs in order to encourage drivers to make their journeys at less busy times, on less congested routes or even on different modes, could