Skip to main content

Bosch develops motorcycle to car communications to reduce crashes

Bosch, in partnership with Autotalks, Cohda Wireless and Ducati, has developed a prototype solution which connects cars and motorcycles, allowing them to communicate with each other in a bid to reduce the number of crashes involving motorcyclists. According to estimates by Bosch accident research, motorcycle-to-car communication could prevent nearly one-third of motorcycle accidents. The system enables vehicles within a radius of several hundred metres to exchange information about ten times a second about
May 26, 2017 Read time: 2 mins
311 Bosch, in partnership with 6765 Autotalks, 6667 Cohda Wireless and Ducati, has developed a prototype solution which connects cars and motorcycles, allowing them to communicate with each other in a bid to reduce the number of crashes involving motorcyclists.


According to estimates by Bosch accident research, motorcycle-to-car communication could prevent nearly one-third of motorcycle accidents.

The system enables vehicles within a radius of several hundred metres to exchange information about ten times a second about vehicle types, speed, position, and direction of travel. Well before drivers or their vehicle sensors see an approaching motorcycle, this technology informs them that a motorcycle is approaching, allowing them to adopt a more defensive driving strategy. If the system identifies a potentially dangerous situation, it can warn the rider or driver by sounding an alarm and flashing a warning notice on the dashboard. In this way, all road users receive essential information that actively helps avoid accidents.

The public WLAN standard (ITS G5) is used as the basis for the exchange of data between motorcycles and cars. Transmission times of just a few milliseconds between transmitter and receiver mean that participating road users can generate and transmit important information relating to the traffic situation. Parked or idling vehicles also transmit data to any surrounding receivers. To allow riders and drivers who are farther away to reliably receive the necessary information, the technology makes use of multi-hopping, which forwards the information automatically from vehicle to vehicle. In critical situations, therefore, all road users know what is happening and are able to take appropriate action in advance.

For more information on companies in this article

Related Content

  • Minnesota DOT deploys GTT’s Canoga to curb intersection vehicle crashes
    September 3, 2014
    Minnesota Department of Transportation (MnDOT) is working toward making the state’s roads safer, using the Canoga traffic sensing solution from Global Traffic Technologies (GTT) to warn at-risk drivers when cross-traffic is approaching. Nearly 70 per cent of fatal vehicle collisions in Minnesota, as well as other states, occur on roads in rural communities, where higher speeds, varying terrain and inconsistent sightlines can put many drivers in danger. The MnDOT initiative is part of the nationwide Towards
  • Video as a Sensor tech drives safer roadways
    October 1, 2021
    Bosch products integrate with partner offerings to provide end-to-end ITS safety solutions
  • Groups seek electronic collision alert devices on big trucks
    February 20, 2015
    The US Advocates for Highway and Auto Safety, the Truck Safety Coalition, the Center for Auto Safety and Road Safe America have filed a petition with the National Highway Traffic Safety Administration (NHTSA) requesting that the agency initiate rulemaking to require forward collision avoidance and mitigation braking (F-CAM) systems on all new large trucks and buses with a gross vehicle weight rating (GVWR) of 10,000 pounds or more. F-CAM technology uses radar and sensors to first alert the driver and then t
  • Asfinag makes case for ITS-G5 over 5G
    March 15, 2019
    Asfinag’s Manfred Harrer and Peter Meckel talk to Jason Barnes about the organisation’s first steps towards C-ITS deployments - and why ITS-G5 will be the underpinning standard For quite a number of years, it was assumed that the connectivity required for cooperative ITS (C-ITS) applications and autonomous vehicle (AV) operations would be catered for by a bespoke communications solution/protocol. This would provide localised ad hoc communication in a manner similar to Wi-Fi, and the dedicated bandwidth/n