Skip to main content

Bosch develops motorcycle to car communications to reduce crashes

Bosch, in partnership with Autotalks, Cohda Wireless and Ducati, has developed a prototype solution which connects cars and motorcycles, allowing them to communicate with each other in a bid to reduce the number of crashes involving motorcyclists. According to estimates by Bosch accident research, motorcycle-to-car communication could prevent nearly one-third of motorcycle accidents. The system enables vehicles within a radius of several hundred metres to exchange information about ten times a second about
May 26, 2017 Read time: 2 mins
311 Bosch, in partnership with 6765 Autotalks, 6667 Cohda Wireless and Ducati, has developed a prototype solution which connects cars and motorcycles, allowing them to communicate with each other in a bid to reduce the number of crashes involving motorcyclists.


According to estimates by Bosch accident research, motorcycle-to-car communication could prevent nearly one-third of motorcycle accidents.

The system enables vehicles within a radius of several hundred metres to exchange information about ten times a second about vehicle types, speed, position, and direction of travel. Well before drivers or their vehicle sensors see an approaching motorcycle, this technology informs them that a motorcycle is approaching, allowing them to adopt a more defensive driving strategy. If the system identifies a potentially dangerous situation, it can warn the rider or driver by sounding an alarm and flashing a warning notice on the dashboard. In this way, all road users receive essential information that actively helps avoid accidents.

The public WLAN standard (ITS G5) is used as the basis for the exchange of data between motorcycles and cars. Transmission times of just a few milliseconds between transmitter and receiver mean that participating road users can generate and transmit important information relating to the traffic situation. Parked or idling vehicles also transmit data to any surrounding receivers. To allow riders and drivers who are farther away to reliably receive the necessary information, the technology makes use of multi-hopping, which forwards the information automatically from vehicle to vehicle. In critical situations, therefore, all road users know what is happening and are able to take appropriate action in advance.

Related Content

  • May 19, 2021
    SNCF uses ITS to make crossings safer
    There are too many deaths where road and rail intersect: Virginie Taillandier, smart level crossing project manager at French rail group SNCF, outlines how ITS communications can help
  • July 21, 2020
    Cohda Wireless: 'New York has the best urban canyons'
    Dr Paul Alexander, chief technical officer of Cohda Wireless, talks to Adam Hill about DSRC versus C-V2X, global connected vehicle take-up, the uses of WiFi – and, of course, seeing round the Big Apple's buildings...
  • October 26, 2017
    USDoT looks at the costs and potential benefits of connected vehicles
    David Crawford looks at latest lessons learned from the trials of connected vehicles in the US. The progress of connected vehicle (CV) technologies takes centre stage among the hot topics highlighted in the September 2017 edition – the first since 2014 – of the ‘ITS Benefits, Costs and Lessons Learned’ survey from the US ITS Joint Program Office (JPO). The organisation is an arm of the US Department of Transportation (USDoT).
  • September 10, 2013
    V2V and V2I safety technology to launch at ITS world Congress
    The ITS world Congress in Tokyo will see the launch of Autotalks’ vehicle-to-vehicle (V2V) and vehicle- to-infrastructure (V2I) safety technology. The Craton communication processor and the Pluton transceiver developed by Autotalks utilise powerful sensors capable of transmitting electronic signals between cars within a defined radius, for example 100 metres. Any vehicles fitted with the V2V technology will be able to analyse the relative speed and distances between any other vehicles within its predetermin