Skip to main content

Bosch develops motorcycle to car communications to reduce crashes

Bosch, in partnership with Autotalks, Cohda Wireless and Ducati, has developed a prototype solution which connects cars and motorcycles, allowing them to communicate with each other in a bid to reduce the number of crashes involving motorcyclists. According to estimates by Bosch accident research, motorcycle-to-car communication could prevent nearly one-third of motorcycle accidents. The system enables vehicles within a radius of several hundred metres to exchange information about ten times a second about
May 26, 2017 Read time: 2 mins
311 Bosch, in partnership with 6765 Autotalks, 6667 Cohda Wireless and Ducati, has developed a prototype solution which connects cars and motorcycles, allowing them to communicate with each other in a bid to reduce the number of crashes involving motorcyclists.


According to estimates by Bosch accident research, motorcycle-to-car communication could prevent nearly one-third of motorcycle accidents.

The system enables vehicles within a radius of several hundred metres to exchange information about ten times a second about vehicle types, speed, position, and direction of travel. Well before drivers or their vehicle sensors see an approaching motorcycle, this technology informs them that a motorcycle is approaching, allowing them to adopt a more defensive driving strategy. If the system identifies a potentially dangerous situation, it can warn the rider or driver by sounding an alarm and flashing a warning notice on the dashboard. In this way, all road users receive essential information that actively helps avoid accidents.

The public WLAN standard (ITS G5) is used as the basis for the exchange of data between motorcycles and cars. Transmission times of just a few milliseconds between transmitter and receiver mean that participating road users can generate and transmit important information relating to the traffic situation. Parked or idling vehicles also transmit data to any surrounding receivers. To allow riders and drivers who are farther away to reliably receive the necessary information, the technology makes use of multi-hopping, which forwards the information automatically from vehicle to vehicle. In critical situations, therefore, all road users know what is happening and are able to take appropriate action in advance.

For more information on companies in this article

Related Content

  • Semi-autonomous hybrid vehicle trials show fuel, emission savings
    July 16, 2012
    The Transport Research Laboratory has unveiled an innovative semi-autonomous vehicle prototype. It offers improves in environmental performance and safety but also displays some shortcomings. Mike Woof reports. The UK's Transport Research Laboratory (TRL) has been working on an innovative project to develop a prototype vehicle intended to reduce fuel consumption. Based on a Ford Escape hybrid model, TRL's Sentience vehicle uses a combination of mobile communications and mapping technologies to reduce fuel c
  • Free-flow tolling needs classification technology rethink
    February 2, 2012
    The move to all-electronic fee collection should be encouraging tolling authorities to look again at whether their vehicle classification criteria and technologies remain at all appropriate. Bob Lees of Idris Technology writes
  • Spin: work with cities to optimise micromobility
    September 15, 2020
    E-scooter providers must form close partnerships with local governments to create a successful operating environment which the public will accept and embrace, says Spin
  • Bosch brings real-time safety to life
    September 19, 2022
    Visitors will have an opportunity to see how Bosch’s video-as-a-sensor technology enables real-time safety solutions for ITS.