Skip to main content

Bosch develops motorcycle to car communications to reduce crashes

Bosch, in partnership with Autotalks, Cohda Wireless and Ducati, has developed a prototype solution which connects cars and motorcycles, allowing them to communicate with each other in a bid to reduce the number of crashes involving motorcyclists. According to estimates by Bosch accident research, motorcycle-to-car communication could prevent nearly one-third of motorcycle accidents. The system enables vehicles within a radius of several hundred metres to exchange information about ten times a second about
May 26, 2017 Read time: 2 mins
311 Bosch, in partnership with 6765 Autotalks, 6667 Cohda Wireless and Ducati, has developed a prototype solution which connects cars and motorcycles, allowing them to communicate with each other in a bid to reduce the number of crashes involving motorcyclists.


According to estimates by Bosch accident research, motorcycle-to-car communication could prevent nearly one-third of motorcycle accidents.

The system enables vehicles within a radius of several hundred metres to exchange information about ten times a second about vehicle types, speed, position, and direction of travel. Well before drivers or their vehicle sensors see an approaching motorcycle, this technology informs them that a motorcycle is approaching, allowing them to adopt a more defensive driving strategy. If the system identifies a potentially dangerous situation, it can warn the rider or driver by sounding an alarm and flashing a warning notice on the dashboard. In this way, all road users receive essential information that actively helps avoid accidents.

The public WLAN standard (ITS G5) is used as the basis for the exchange of data between motorcycles and cars. Transmission times of just a few milliseconds between transmitter and receiver mean that participating road users can generate and transmit important information relating to the traffic situation. Parked or idling vehicles also transmit data to any surrounding receivers. To allow riders and drivers who are farther away to reliably receive the necessary information, the technology makes use of multi-hopping, which forwards the information automatically from vehicle to vehicle. In critical situations, therefore, all road users know what is happening and are able to take appropriate action in advance.

For more information on companies in this article

Related Content

  • Intersection management, cooperative infrastructures - what next?
    February 1, 2012
    What do recent vehicle recalls mean for future cooperative infrastructures? Anthony Smith takes a look. As ITS industry stakeholders converge on Amsterdam for the 2010 Cooperative Mobility Showcase, an unprecedentedly wide range of technologies will be on display demonstrating what might be achievable in the future from innovations based on Vehicle-to-Vehicle (V2V) and Vehicle-to-Infrastructure (V2I) communications.
  • Pittsburgh reveals pedestrian crash rates 
    July 20, 2021
    Nearly 90% of crashes occurred within 500 feet of a transit stop, says startling new report
  • Newcastle rush-hour traffic trials get the go-ahead
    February 15, 2013
    Traffic trials aimed at streamlining the rush-hour commute in the UK’s north-east have been given the green light. The project in Newcastle involves new satellite navigation technology which helps drivers adjust their speed so they can pass through a series of lights on green. The European project is being led by Newcastle University and Newcastle City Council, and aims to reduce city centre congestion and pollution associated with stop-start driving. Phil Blythe, Professor of Intelligent Transport Systems
  • WiM avoids bumps in the road
    May 5, 2020
    Road surfaces are deteriorating as years of budget squeezes bite among local authorities. Adam Hill asks leading Weigh in Motion players what effect this might be having on the accuracy of their technology – and how authorities can be made to see that WiM is a helpful tool