Skip to main content

Automotive software developers call on hackers to find its flaws

A consortium of US researchers has announced the development of a universal, free, and open-source framework to protect wireless software updates in vehicles. The team issued a challenge to security experts everywhere to try to find vulnerabilities before it is adopted by the automotive industry. The new solution, called Uptane, evolves the widely used TUF (The Update Framework), developed by NYU Tandon School of Engineering Assistant Professor of Computer Science and Engineering Justin Cappos to secure
January 20, 2017 Read time: 3 mins
A consortium of US researchers has announced the development of a universal, free, and open-source framework to protect wireless software updates in vehicles. The team issued a challenge to security experts everywhere to try to find vulnerabilities before it is adopted by the automotive industry.

The new solution, called Uptane, evolves the widely used TUF (The Update Framework), developed by NYU Tandon School of Engineering Assistant Professor of Computer Science and Engineering Justin Cappos to secure software updates. Uptane is a collaboration of NYU Tandon, the University of Michigan Transport Research Institute (UMTRI), and the Southwest Research Institute (SwRI), and is supported by contracts from the US Department of Homeland Security, Science and Technology Directorate.

Modern cars contain dozens of computers, or electronic control units (ECUs), that control everything from safety equipment (airbags, brakes, engine, and transmission, and more) to entertainment systems. The increasing complexity of modern cars accompanies an increasing likelihood of flaws in the software. To combat this, vehicle makers are equipping ECUs with a secure software over-the-air (SOTA) update capability, allowing the software to be changed without visiting a service depot, resulting in fewer recalls and greater customer satisfaction. However, hackers can target these software update mechanisms to install malicious software, viruses, or even ransomware, the results of which could be catastrophic.

"Although widespread attacks are still difficult and expensive, they lie within the capabilities of nation-state cyber warriors, and it is time to begin securing the infrastructure, particularly as automotive electronics increase," Cappos said.

Uptane goes beyond TUF in order to address the unique problems posed by automotive software. For example, it allows automakers to completely control critical software but to share control when appropriate – for example, when law enforcement needs to tune a vehicle for off-road conditions. It also helps automakers to quickly deploy secure fixes for a vulnerability exploited in an attack or to remotely and inexpensively update a car's electronics.

The group has been holding regular design workgroups to develop a universal framework that could enhance the security mechanisms, protecting cars as soon as next year. As is standard practice in open-source projects, the team called upon security experts everywhere to help them find flaws in the proposed framework so that a secure final version can be adopted.

Related Content

  • October 27, 2016
    The downside of driverless vehicles
    Driverless cars will have a detrimental effect on congestion and security while the road safety benefits can be achieved sooner and cheaper using ADAS, argues Colin Sowman. Many Governments are consulting about the introduction of driverless vehicles and even running trials. As 70% or 80% of crashes are caused by human error, the promise of a crash-free future of driverless, self-driving or autonomous vehicles (call them what you will) is alluring, as are the claims of reduced congestion and lower emissions
  • January 31, 2012
    Interoperable electronic payment systems begin testing
    OmniAir's Tim McGuckin writes about progress with the Electronic Payment Services National Interoperability Specification, which aims to provide the US with payment capabilities at lane level using any ETC component protocol. The OmniAir Consortium was founded to advance US national deployment of open, effective and interoperable transportation technology systems. Through its member-defined programmes, companies and individuals join to work for open standards, interoperability, third-party certification and
  • August 22, 2012
    US DoT launches largest-ever road test of connected vehicle crash avoidance technology
    Nearly 3,000 cars, trucks and buses equipped with connected Wi-Fi technology to enable vehicles and infrastructure to ‘talk’ to each other in real time to help avoid crashes and improve traffic flow, began traversing Ann Arbor's streets yesterday as part of a year-long safety pilot project by the US Department of Transportation. Ray LaHood, US Transportation Secretary, joined elected officials and industry and community leaders on the University of Michigan campus to launch the second phase of the Safety Pi
  • September 29, 2017
    Autonomous vehicles will not hit UK roads for over a decade, says PA Consulting Group
    PA Consulting Group's latest research on autonomous vehicles (AVs) suggests that despite much hype, they are more than 10 years away from being a common sight on UK roads. PA's findings revealed that while progress is being made around technology, the rest of the ecosystem to support driverless cars - for example regulation, insurance, compliance, roads, users - still needs a lot of development. The recent launch of the Government's MERIDIAN scheme progressed plans for CAV technology development in th